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Synaptic inhibition is a critical regulator of neuronal excitability,

and in the mature brain the majority of synaptic inhibition is

mediated by Cl�-permeable GABAA receptors. Unlike other

physiologically relevant ions, Cl� is dynamically regulated, and

alterations in the Cl� gradient can have significant impact on

neuronal excitability. Due to changes in the neuronal Cl�

concentration, GABAergic transmission can bidirectionally

regulate the induction of excitatory synaptic plasticity and gate

the closing of the critical period for monocular deprivation in

visual cortex. GABAergic circuitry can also provide a powerful

restraining mechanism for the spread of excitation, however

Cl� extrusion mechanisms can become overwhelmed and

GABA can paradoxically contribute to pathological excitation

such as the propagation of seizure activity.
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Introduction
GABA and glycine are the primary inhibitory neurotrans-

mitters in the central nervous system. All of glycinergic

inhibition and the majority of GABAergic inhibition is

mediated by chloride (Cl�)-permeable receptors. For

GABA these are GABAA receptors (GABAARs), which

produce the fast hyperpolarizing currents classically ob-

served in mature neurons [1]. Owing to the critical role of

inhibition in regulating action potential firing [2], neuro-

nal Cl� regulation is inextricably linked to excitability of

individual neurons and the networks in which they are
www.sciencedirect.com 
embedded. Because Cl� is dynamically regulated in

development [3] and by activity in the mature nervous

system [4] the relationship between Cl� and excitability

is both time-dependent and state-dependent.

Neuronal Cl� is primarily regulated by two electroneutral

cation-chloride cotransporters (CCCs), NKCC1 and

KCC2, whose relative expression patterns vary across

development [5]. NKCC1 transports Cl� in to the cell

and is the dominant CCC expressed in immature neurons,

resulting in a relatively high intracellular Cl� concentra-

tion ([Cl�]i), which is responsible for depolarizing GABA

in young tissue. During early postnatal development,

there is a dramatic upregulation of the Cl�-extruding

transporter KCC2, which significantly lowers [Cl�]i,

and thus switches the actions of GABA to hyperpolarizing

[6]. In addition to Cl� co-transport, other Cl� channels

including ClC-2 [7] and GABAARs themselves [8] have

been shown to modulate [Cl�]i. While the dynamic

nature of neuronal Cl� regulation has been known for

decades, it has only been relatively recently that research-

ers have discovered how small changes in [Cl�]i can

produce significant changes in neuronal excitability and

brain function. Throughout this review we highlight the

experimental and computational evidence for the emerg-

ing concept that small changes in neuronal Cl� can have a

big impact on neuronal excitability, synaptic plasticity,

and information processing in the healthy brain. We also

examine how aberrant Cl� regulation controls excitability

that both contributes to and results from pathophysiologi-

cal disease states, as exemplified by epileptic seizures.

Core concepts in ClS homeostasis and
GABAergic transmission
In order to fully appreciate the relationship between Cl�

and excitability we will first briefly review the relation-

ship between Cl� and membrane polarization. The

GABAA current is a product of the GABAAR conductance

and the driving force for Cl� (DFCl); DFCl is the differ-

ence between the membrane potential and reversal po-

tential for GABA (EGABA; Figure 1). In mature neurons,

[Cl�]i is relatively low (�5 mM), which results in EGABA

(��73 mV) being slightly hyperpolarized with regards to

the resting membrane potential (Vrest). In this scenario,

when [Cl�]i is relatively low, GABAAR activation results

in an inward Cl� gradient that reduces excitability by

pulling the membrane potential away from threshold,

thereby decreasing the probability of action potential
Current Opinion in Neurobiology 2017, 43:35–42
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The intracellular Cl� concentration determines GABA polarity. Left: When [Cl�]i is low (blue), EGABA will be hyperpolarized with respect to Vrest, and

the GABAergic postsynaptic potential will by hyperpolarizing and inhibitory. Middle: When [Cl�]i is elevated (green) and EGABA sits depolarized with

respect to Vrest, but hyperpolarized with respect to the AP threshold, the GABAergic postsynaptic potential will be depolarizing but the action of

GABA will still be inhibitory due to shunting inhibition. Right: When [Cl�]i is high (pink), EGABA will be depolarized with respect to Vrest and the AP

threshold, and the depolarizing GABAergic postsynaptic potential will be excitatory.
(AP) generation. However, the relatively close proximity

of EGABA and Vrest has profound consequences, because it

means that even relatively small increases in [Cl�]i will

depolarize EGABA toward Vrest, significantly reducing or

even eliminating hyperpolarizing inhibition. In fact, a

relatively small increase in [Cl�]i can flip the polarity

of GABAA currents from hyperpolarizing to depolarizing,

which will have a significant impact on excitability (de-

fined as the probability of generating an AP, see Figure 1).

When [Cl�]i increases the impact on excitability becomes

more complex. The most straightforward scenario occurs

when [Cl�]i increases to the point where EGABA is more

depolarized than the AP threshold and a spike is gener-

ated — in this case GABA is excitatory. However, if

EGABA sits between Vrest and the AP threshold the out-

come can be less intuitive. In this scenario, in which

GABA is depolarizing but not excitatory, the increased

Cl� conductance through GABAARs will counteract the

effect of simultaneous cation influx through neighbouring

glutamate receptors and GABA will exert an inhibitory

action through ‘shunting inhibition’. Therefore, the fac-

tors which control [Cl�]i have a profound influence on

neuronal output and network excitability.
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Activity-induced short-term changes in [Cl�]i can add an

additional level of complexity to the relationship between

Cl� regulation and excitability. It has long been known

that intense activation of GABAARs alone, particularly on

dendrites, can convert initial hyperpolarizing GABA

responses to become depolarizing and even excitatory

[9]. This is predominantly because activated GABAARs

are also permeable to bicarbonate, which has a reversal

potential significantly depolarized to the AP threshold

[10]. During intensive GABAAR activation Cl� influx can

overwhelm Cl� extrusion mechanisms resulting in a

collapse of the Cl� gradient, and thus the bicarbonate

current predominates causing the membrane potential to

be driven toward the relatively depolarized EHCO3� [11].

Techniques for the measurement and control
of intracellular ClS concentration
The investigation of Cl� in the context of network

excitability has been enabled by experimental tools

which are either able to determine [Cl�]i indirectly, via

the measurement of EGABA using the gramicidin perfo-

rated patch clamp technique [12] or single channel

recordings in cell attached mode [13], or directly by using
www.sciencedirect.com
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Cl� sensitive dyes or genetically encoded fluorescent Cl�

reporters [14,15]. Genetically encoded Cl� reporters are

under continual refinement, with the latest generation

offering a means to correct for the inherent pH sensitivity

of GFP-based mutants [16,17]. What is still missing from

this experimental armamentarium however, is a pH in-

sensitive, genetically encoded, Cl� sensor suitable for use

with 2-photon microscopy. Cl� is typically manipulated

via pharmacological modulation of endogenous Cl� trans-

port NKCC1 of KCC2. Optogenetic techniques have now

emerged for cell-type specific modulation of Cl� in

neurons. Light-activated Cl�-extrusion can be achieved

using the light-activated Cl� pump, halorhodopsin [18�].
The recent description of light-activated Cl� channels,

ChloCs and gtACRs [19,20] underpins a novel co-opera-

tive optogenetic technique for Cl� extrusion termed ‘Cl-

out’ [21��]. The Cl-out strategy employs archaerhodopsin

to provide the driving force for Cl� removal through

concurrently activated light-activated Cl� channels

(ChloC or gtACR2). Together these latest optogenetic

techniques offer the potential for monitoring and manip-

ulating Cl� at unprecedented spatial and temporal scales.

ClS regulation and excitability — impact on
information processing
Even modest changes in Cl� concentrations can have

relatively large effects on neuronal excitability. In this

section, we examine experimental examples demonstrat-

ing the impact of Cl� regulation on excitability in the

context on neuronal networks important for information

processing. A computational model of a CA1 hippocampal

neuron revealed that a �2.5 mM increase in [Cl�]i can

result in a 40% increase in firing rate [22]. In this vein,

transient Cl� loading of neurons with halorhodopsin

markedly increases the probability of spiking in response

to a polysynaptic stimulus [18�]. Small changes to EGABA

are likely to be even more significant when the balance

between GABAergic inhibition and facilitation is a fine

one. When EGABA is more depolarized than Vrest somatic

GABAAR activation can either shunt or facilitate excit-

atory inputs providing a bidirectional control of neuronal

firing rates [23,24]. But it is not just increases in [Cl�]i that

regulate excitability. Decreases in neuronal Cl� can in-

crease the magnitude of hyperpolarizing currents, which

in turn will increase the likelihood of activating hyper-

polarization-sensitive cation channels. For example, in

the auditory brainstem the integration of large hyperpo-

larizing inhibitory postsynaptic potentials resulting from a

large Cl� driving force activate Ih and T-type calcium

currents, which in turn promote rebound spiking [25].

Information processing does not depend only on the

direct excitability of individual neurons, but rather on

the output of neural networks. Computational studies

have revealed that even relatively minor perturbations

in Cl� homeostasis can degrade neuronal coding, mea-

sured using information and signal detection theories

[26�].
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There is also the possibility that Cl� ions themselves may

be directly sensed by proteins containing GXXXP-sites,

such as ion transporters [27�], which could in-turn regu-

late excitability. While evidence for Cl� ions acting

directly as signaling molecules is in its infancy, it is

tantalizing to imagine how Cl� signaling could regulate

excitability. For example the recent discovery that Cl�

homeostasis normalizes NMDAR activity in spinal dorsal

horn and primary sensory neurons [28�]; while the authors

suggest that the suppression of NMDAR activity results

from reduced excitability due to disinhibition resulting

from elevated Cl�, it is possible to speculate that the

reduction in NMDAR activity could result from a direct

or indirect sensing of Cl�.

ClS regulation and excitability — impact on
glutamatergic plasticity
Early in development, many glutamatergic synapses in

the brain are ‘silent’, owing to the dominant expression of

NMDA receptors (NMDARs), leading to reduced or

absent postsynaptic currents when a cell is at rest [29].

As such, LTP and AMPA receptor (AMPAR) insertion

can only occur at silent synapses when there is an alter-

native means for postsynaptic depolarization [30]. Over

the last decade, researchers have provided convincing

evidence that depolarizing GABA [31] is indeed an im-

portant mechanism for ‘unsilencing’ immature glutama-

tergic synapses (see Figure 2a). A series of studies using

both pharmacological and genetic manipulations have

shown that the normal development of AMPA-mediated

currents at glutamatergic synapses requires depolarizing

GABA [32–35]. In-line with these findings, a recent study

in Xenopus laevis embryos found that neurons in the young

optic tectum have very weak AMPAR-mediated currents

— so weak that the cells do not spike in response to visual

stimuli, despite receiving robust, visually driven, depo-

larizing GABA inputs [36��]. These cells could be ‘unsi-

lenced’ by visual stimulation-induced increases in

AMPAR-mediated currents by a mechanism requiring

normal NKCC1 function and NMDAR-mediated inputs

[36��]. Similarly newborn cells in the dentate gyrus of

adult mice have silent synapses that can be unsilenced via

synaptic stimulation, but only with a combination of

NMDARs and depolarizing GABA inputs [37]. Thus,

in both the developing brain, and in adult born neurons,

the maturation of silent glutamatergic synapses depends

on depolarizing GABA currents. It is important to note,

though, that in the circuits studied to date the GABAAR

reversal potential is not that depolarized relative to rest

(e.g. roughly 5–20 mV) and GABAergic inputs are in fact a

form of shunting inhibition [33,36��,38,39��]. This under-

scores the fact that small shifts in the Cl� gradient can

have important ramifications for glutamatergic synapse

development.

Even at glutamatergic synapses with sufficient AMPARs

to drive postsynaptic currents at rest, Cl� gradients can
Current Opinion in Neurobiology 2017, 43:35–42
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Figure 2
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The neuronal Cl� gradient regulates glutamatergic synaptic transmission and seizure propagation. (a) Silent glutamatergic synapses containing

primarily NMDARs (left), can be unsilenced by depolarizing GABAergic transmission (middle). The depolarization of Vrest by GABAergic

transmission can remove the Mg2+ block from NMDARs, thus facilitating the influx of Ca2+ required to promote the insertion of AMPARs into the

postsynaptic density, which is required for mature glutamatergic synapses (right). (b) A ‘bird’s eye’ view of cortex demonstrates how intracellular

Cl� accumulation and an excitatory shift in GABAergic transmission promotes seizure propagation. Typically, seizure onset (t1) occurs at a single

focus, which may include cells with abnormally high intracellular Cl� (pink) due to misregulation of Cl� transporter proteins. Surrounding, ‘healthy’,

tissue would include neurons with physiological Cl� levels and intact inhibition (green and blue). However, a seizure is able to spread (t2) when

this surrounding inhibition is compromised due to overwhelming Cl� influx, which accompanies intense GABAAR activation concomitant with

membrane depolarization. Following seizure propagation excitatory GABA (pink) serves to sustain seizure activity in anatomically normal circuits

beyond the seizure focus.
help to shape LTP and LTD. Inhibitory GABA can

regulate excitatory plasticity, including spike-timing de-

pendent plasticity (STDP), by regulating Ca2+ transients

[40,41], back-propagating action potentials [42,43] and

the coincidence of presynaptic and postsynaptic spikes

[44,45]. Given these mechanisms of influence over LTP

and LTD at excitatory synapses, it is unsurprising that

GABAergic hyperpolarization is important for controlling

the rules of excitatory plasticity induction [44,46]. The

converse to this is that depolarizing GABA will exert

different effects that are also important for shaping

LTP and LTD. Indeed, depolarizing GABAergic inputs

can enhance the amount of Ca2+ influx produced by
Current Opinion in Neurobiology 2017, 43:35–42 
synaptic stimulation [47], and promote network synchro-

ny [31,48,49], both of which would be likely to alter

synaptic potentiation or depression at excitatory synapses.

Notably, one study has found evidence that depolarizing

GABA in striatal dendrites can determine the polarity of

STDP via the regulation of Ca2+ influx [50], and there is

no reason to believe that this would not extend to other

circuits. Whether these sorts of effects have any major

implications during development, when GABA tends to

be depolarizing, is still unknown. However, it is interest-

ing to note that a recent study found that interfering with

depolarizing GABA early in development alters inhibitory

circuits and BDNF signaling weeks later, which leads to
www.sciencedirect.com
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an extension of immature LTP induction and an exten-

sion of the critical period for monocular deprivation in

visual cortex [51��]. Notably, these effects were not only

long-lasting, but they occurred in circuits where depolar-

izing GABAergic inputs likely provide shunting inhibi-

tion, not actual excitation of spiking [39��]. Altogether,

there is much more research to do in order to understand

how Cl� gradients may alter LTP and LTD in the brain.

This is particularly true given the growing realization that

distal dendrites can also be highly innervated by

GABAergic inputs and in these compartments the rela-

tionship between Cl� and neuronal excitability is unlike-

ly to be straightforward [36��]. For example, in the

prefrontal cortex, activation of somatostatin-positive

interneurons that synapse onto dendritic spines results

in compartmentalized inhibition, which suppresses Ca2+

influx [37]. Because dendritic Ca2+ is required for the

indication of numerous forms of glutamatergic synaptic

plasticity, Cl�-mediated inhibition onto these compart-

ments may act to negatively regulate plasticity induction.

ClS regulation and excitability —
pathophysiological relevance
As small changes to [Cl�]i can have profound effects on

excitability and glutamatergic plasticity as described

above, it is therefore not surprising that perturbations

of Cl� also play major roles in a host of excitability

disorders, including neuropathic pain [28�,52], spasticity

[53], autism [54,55�], schizophrenia [56] and epilepsy

[57]. In all of these cases, changes in the expression or

function of Cl�-transporters leads to inappropriately

raised [Cl�]i with consequent disruptions to inhibitory

signaling.

Epilepsy is often considered the prototypical hyperexcit-

ability disorder and will be used as an example to illus-

trate how Cl� affects the spread of excitation within

neural circuits. Epilepsy is characterized by recurrent

seizures, which reflect a failure of inhibitory systems to

contain the generation and propagation of neuronal

hyperexcitability. Cl� regulation is severely compro-

mised in perturbed brain tissue known to generate sei-

zures, in animal models of epilepsy and human patients.

For example, in human tissue surgically resected for the

treatment of temporal lobe epilepsy, GABAAR responses

were depolarizing and excitatory due to elevated [Cl�]i

[58]. Alterations in the expression of NKCC1 and/or

KCC2 are critical regulators of depolarizing GABA that

contributes to epilepsy following trauma [59], ischemia

[60] or seizures themselves [61]. In this vein, a depolariz-

ing shift in EGABA has been associated with seizure onset

in various models of seizures [62–64]. Recently, the use of

halorhodopsin to transiently increase [Cl�]i in large num-

bers of neurons has elegantly linked raised [Cl�]i to

hyperexcitable states within cortex [65]. Conversely,

optogenetic Cl� extrusion using Cl-out has been shown
www.sciencedirect.com 
to reverse an epileptogenic phenotype precipitated by

pharmacological KCC2 blockade [21��].

Short-term changes in Cl� regulation may also help

explain how seizures are able to spread beyond the

epileptogenic focus into naive or otherwise ‘healthy’

areas. In cortical structures including the hippocampus

and cortex, feedforward and feedback GABAergic circuit-

ry provide a powerful restraining mechanism for the

spread of pathological excitation [2,66,67]. Indeed, sur-

round inhibition can be observed as intense inhibitory

barrages which surround focal epileptic activity in cortex

[66–68]. However, powerful and continued activation of

GABAARs, combined with the membrane depolarization

accompanying concomitant glutamatergic activation, pro-

vide the ideal conditions for rapid Cl� influx via these

receptors [11,69]. This is predicted to overwhelm other-

wise normal Cl� extrusion mechanisms and result in Cl�

accumulation during seizures. Indeed, profound Cl� load-

ing has been observed accompanying seizure-like events

in vitro [17,70]. The result is to first weaken the inhibitory

effect of GABAergic transmission before subverting it to

help promote the propagation of seizure activity as an

additional excitatory process [71–74] (Figure 2b).

Considering the involvement of Cl� regulation in the

pathogenesis of epilepsy and other hyperexcitability dis-

orders, pharmacological and recent optogenetic strategies

to enhance Cl� extrusion could constitute promising

new strategies for treating these debilitating diseases

[21��,28�,75].

Conclusions and future directions
It is clear that the transmembrane Cl� gradient is an

important variable, which affects plasticity and excitabil-

ity within neural circuits (Figure 2). Nonetheless, the

various possible interactions between Cl� concentration

dynamics, plasticity processes and neural activity remind

us of the difficulties involved in investigating these

phenomena. This underscores the importance of compu-

tational modeling for determining the relevance and

impact of continuously interacting variables, which can

sometime be difficult to separate experimentally. Fur-

thermore, computational modeling will be important for

determining the implications of Cl� dynamics on learning

at the behavioural level. Machine learning research sug-

gests that the brain may use multiple different learning

objectives throughout development to shape behaviour

[76], and changes in Cl� dynamics may be one of the

mechanisms by which the brain controls the functional

outcomes of synaptic plasticity at different times in an

individual’s life. Future research will no doubt take

advantage of the latest optogenetic tools for monitoring

and manipulating Cl�, as well as powerful computing

technologies, in order to determine how Cl� dynamics

relate to plasticity and information processing within the

brain.
Current Opinion in Neurobiology 2017, 43:35–42
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