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Epilepsy is a condition characterized by 
recurrent spontaneous seizures that affects 
more than 50 million people worldwide, 
the majority of whom live in low- income 
and middle- income countries (LMICs)1. 
Seizures are associated with multiple risks, 
including fractures, bruising, head trauma 
and premature mortality. One of the 
most important causes of epilepsy- related 
mortality is status epilepticus, a state of 
unrelenting seizure activity that persists 
for more than 5 min2. Status epilepticus is a 
neurological emergency, and prompt action 
to stop these prolonged seizures can reduce 
both morbidity and mortality.

Benzodiazepines can terminate 
seizures by enhancing GABAA receptor 
(GABAAR)- mediated signalling and are the 
preferred first- line management of status 
epilepticus in both adults and children3–7. 
These medications are easy to administer, 
cost- effective and often successful in 
terminating status epilepticus, especially 

scientific and clinical perspectives. 
We focus on convulsive status epilepticus 
(CSE) in adults and children. We briefly 
discuss implications for other less common 
forms of status epilepticus, namely 
non-convulsive status epilepticus (NCSE) 
and neonatal status epilepticus. We review 
the current clinical literature to assess 
global trends in benzodiazepine- resistant 
CSE and discuss experimental research 
that describes the possible pathophysiology 
underlying benzodiazepine resistance. Here, 
we focus on the GABAAR — the principal 
target of benzodiazepines — and explore 
the multiple seizure- induced changes 
that alter the sensitivity of GABAAR to 
benzodiazepines during the evolution of 
ongoing seizure activity. Last, we highlight 
unanswered questions and suggest possible 
considerations for improved treatment 
strategies based on the latest experimental 
studies and multicentre randomized 
clinical trials.

Global relevance
Making an accurate estimate of the current 
epidemiology of status epilepticus is difficult. 
Substantial variation in study designs 
and the introduction of new diagnostic 
criteria in 2015 impede the comparison 
of results across studies20–23. Data are often 
not stratified across age groups or across 
different types of status epilepticus, which 
makes it challenging to estimate the burden 
of CSE in adults and children. However, 
on the basis of available data, the global 
annual incidence of status epilepticus has 
been reported to range from 14 to 35 per 
100,000 children24–26 and from 5 to 36 per 
100,000 adults27–29. As CSE is the most 
common presentation of status epilepticus, 
these figures might more closely reflect the 
incidence of CSE. A bimodal age distribution 
seems to be present, with the peak incidence 
in early childhood (within the first decade 
of life) and a progressive rise of status 
epilepticus incidence in older individuals 
from the sixth decade of life onwards27,30. 
Febrile illness in children and stroke in adults 
are the most common causes of CSE27,28,30–32. 
In LMICs, infectious causes such as cerebral 
malaria can add to the prevalence and 
severity of CSE25,33,34.

The management of CSE has been of 
global academic interest for many decades, 

if used early after the onset of seizure 
activity5,7. Failure of two adequate doses of 
appropriate benzodiazepines to terminate 
status epilepticus necessitates the use of 
second- line anti- seizure medications such 
as fosphenytoin, phenytoin, phenobarbital, 
levetiracetam or valproate8–11. In some 
cases of status epilepticus, third- line 
management is required with anaesthetics 
such as thiopentone and propofol12,13. 
Therefore, benzodiazepine- resistant status 
epilepticus requires additional medications, 
sophisticated drug administration 
(including syringe drivers for infusions 
and non- glucose prepared solutions for 
drugs such as phenytoin) and access to 
intensive care services that can provide 
close monitoring and invasive ventilation5,14. 
These interventions might not always be 
readily accessible, particularly to those 
living in resource- limited countries15–19.

In this Review, we explore benzodiazepine- 
resistant status epilepticus from both 
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with the use and efficacy of benzodiazepines 
being among the most studied topics13.  
A number of studies have given either 
direct or indirect indication of the efficacy 
of first- line benzodiazepine monotherapy 
(Table 1). By taking an average of the results 
of these studies, we conclude that, globally, 

resistance to first-line treatment with 
benzodiazepines occurs in approximately 
36% of patients with CSE (Fig. 1a). The 
average reported rate of resistance was 
higher in studies from LMICs than in 
studies from high- income countries (HICs). 
Supplementary Fig. 1 shows socioeconomic  

and temporal differences in benzodiazepine- 
resistant CSE stratified according to age 
group and number of study participants. 
The rate of benzodiazepine resistance 
reported varied from 3% to 89%; this large 
range is likely to reflect the substantial 
heterogeneity in study designs and protocols 
used. Our estimate of benzodiazepine 
resistance is more than double that quoted 
previously by Treiman35 in 1990 (~17% 
versus ~36%). This difference is likely to 
result from the large number of studies that 
have been conducted since that original 
report, including the availability of more 
data from LMICs.

The duration of CSE is an important 
indicator of whether a patient will respond 
to a first- line benzodiazepine. A relationship 
between treatment latency — defined 
as the time between the start of CSE 
and administration of a first dose of 
benzodiazepine — and benzodiazepine 
resistance has been demonstrated in 
prospective observational studies conducted 
in both LMICs36 and HICs14,37. Obtaining 
an accurate estimate of CSE latency is 
often difficult as it relies on a witness 
being present when the CSE started or 
for care providers to record the time of 
seizure onset23. Furthermore, the initial 
presentation might represent intermittent 
seizures that only later progress into CSE, 
with the two being viewed as separate 
phenomena. By synthesizing the results 
of the studies in Table 1 that report CSE 
latency, we observed that, as the duration 
of CSE increases, so too does resistance 
to first- line benzodiazepines (Fig. 1b). We 
noted that in studies reporting CSE episodes 
exceeding 60 min, the resistance to first- line 
benzodiazepines is as high as 89%. One can 
postulate that this phenomenon is likely to 
be more pronounced in resource- limited 
countries owing to challenges in health- care 
access. This hypothesis is supported by our 
observation that the majority of studies 
from LMICs reported episodes of CSE that 
were longer than 60 min in duration (Fig. 1c). 
Another important variable might be the 
underlying aetiology of CSE, but the current 
body of literature does not separate cases of 
benzodiazepine- resistant status epilepticus by 
cause of seizures. To gain an understanding 
of how underlying aetiology contributes to 
benzodiazepine resistance, further studies  
are required.

Dosing for first- line benzodiazepine 
trials was not consistent across studies.  
Theoretically, to be deemed benzodiazepine- 
resistant, a patient in status epilepticus 
should show no response to a benzodiazepine 
even if given the maximum safe total dose. 

Table 1 | Studies showing resistance to first- line treatment with benzodiazepine 
monotherapy in convulsive status epilepticus

Study Country episodesa Cohort BZP- r (%) latency (min)

Low- income and middle- income countriesb

Das et al. (2020)189 India 94 Paediatric 89 >60

Burman et al. (2019)8 South Africa 144 Paediatric 48 31–60

Hassan et al. (2016)190 India 84 Mixed 78 >60

Thakker and Shanbag 
(2013)191

India 50 Paediatric 54 31–60

Misra et al. (2012)192 India 79 Adult 24 10–30

Gathwala et al. (2012)193 India 120 Paediatric 14 Not reported

Arya et al. (2011)194 India 141 Paediatric 18 Not reported

Chen et al. (2011)195 China 121 Adult 38 31–60

Skinner et al. (2010)196 Honduras 31 Adult 65 >60

Amare et al. (2008)197 Ethiopia 119 Adult 63 31–60

Mpimbaza et al. (2008)198 Uganda 330 Paediatric 37 >60

Ahmad et al. (2006)199 Malawi 80 Paediatric 25 >60

Fişgin et al. (2002)200 Turkey 45 Paediatric 42 >60

Tabarki et al. (2001)201 Tunisia 139 Paediatric 45 >60

High- income countriesb

Theusinger et al.c 
(2019)202

Switzerland 126 Adult 28 10–30

Theusinger et al.c 
(2019)202

Switzerland 39 Paediatric 3 10–30

Kay et al. (2019)203 Germany 42 Adult 28 31–60

Navarro et al. (2016)204 France 68 Adult 16 >60

Chamberlain et al. 
(2014)205

USA 273 Paediatric 15 Not reported

Silbergleit et al. (2012)40 USA 509 Mixed 43 Not reported

Chin et al. (2008)206 UK 240 Paediatric 35 31–60

McIntyre et al. (2005)207 UK 219 Paediatric 58 31–60

Qureshi et al. (2002)208 UK 48 Paediatric 25 31–60

Mayer et al. (2002)209 USA 83 Adult 69 >60

Alldredge et al. (2001)41 USA 134 Adult 49 31–60

Lahat et al. (2000)210 Israel 44 Paediatric 5 10–30

Coeytaux et al. (2000)211 Switzerland 172 Mixed 50 31–60

Scott et al. (1999)212 UK 42 Mixed 33 31–60

Treiman et al. (1998)152 USA 384 Adult 35 31–60

Chamberlain et al. 
(1997)213

USA 24 Paediatric 8 31–60

Appletan et al. (1995)214 UK 86 Paediatric 21 31–60

Remy et al. (1992)215 France 39 Adult 28 Not reported

BZP- R, percentage of episodes that were resistant to first- line benzodiazepine treatment. aEpisodes refers 
to the number of episodes of convulsive status epilepticus analysed in each study (sample size). bIncome 
classification based on gross national income per capita (in US dollars) from the latest ratings216. cData 
from same study across different age groups.
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In reality, however, many patients do not 
receive adequate doses of benzodiazepines, 
with this being particularly pertinent 
for out- of- hospital status epilepticus38,39. 
This under- dosing might be attributed to 
the administration route — for example, 
benzodiazepines are less well absorbed 
when administered rectally than when 
administered intravenously40,41 — or 
to clinicians choosing to administer an 
alternative anti- seizure medication instead 
of a second dose of benzodiazepine. 
Moreover, some care providers are overly 
cautious in administering the recommended 
doses of benzodiazepines out of concern 
about causing respiratory depression that 
would necessitate ventilatory support38. 
However, the likelihood of this adverse 
event occurring has yet to be sufficiently 
studied in the context of CSE.

Taken together, the evidence discussed 
above indicates that duration of status 
epilepticus is an important determinant 
of response to benzodiazepines14,42. 
This relationship indicates that the 
pathophysiology of status epilepticus 
involves adaptive changes in the brain 
that occur during the evolution of status 
epilepticus, ultimately affecting the efficacy 
of benzodiazepines. Understanding the 
sequence in which such changes occur 
might provide important insights into 
how the treatment of status epilepticus 
can be optimized. As benzodiazepines 
target the GABAAR, consideration of the 
structure and function of this chloride 
(Cl−)- permeable ionotropic receptor 
is important for understanding how 
benzodiazepine resistance might emerge 
in status epilepticus.

The GABAA receptor
The GABAAR is a pentameric, ligand- 
activated, ionotropic receptor that is 
formed by different permutations of five 
constitutive subunits43,44. The receptor is 
largely, but not exclusively, expressed on 
the postsynaptic membrane of neurons. The 
different subunits are separated into classes 
(α, β, γ, δ, ε, π, θ) according to their amino 
acid composition. Some of these subunits can 
be further classified into different isoforms 
(α1–6, β1–3, γ1–3). The combination of subunit 
classes and isoforms ultimately determines 
the biophysical properties of the channel, 
including its localization, ligand binding 
and conductance44. The most common 
arrangement of the GABAAR in the rodent 
and human brain is two α1- subunits, two 
β2- subunits and a γ2- subunit45–54. It is evident 
from studies in rodent brain tissue that 
receptors of this composition are associated 

with phasic inhibition and are located at most 
GABAergic synapses (Fig. 2).

The γ- subunit is considered to be 
crucial for the clustering of GABAAR at 
synapses55. Consistent with this view, in 
rodents in vitro studies have found that 
GABAARs in which the γ- subunit has 
been replaced by a δ- subunit are present 
at extrasynaptic sites56,57. GABAARs 
are activated by the neurotransmitter 
GABA, which binds between the α- and 
β- subunits58,59. This binding induces a 
conformational change in the pentameric 
channel to make it selectively permeable to 
Cl− and, to a much lesser extent, bicarbonate 
(HCO3

−)60–62. Cl− flux predominates 
and, under physiological conditions, the 
transmembrane electrochemical gradient 
favours Cl− movement into the cell. GABAAR 
activation therefore typically causes a net 
inward movement of negative charge and 
membrane hyperpolarization (Fig. 2a). This 
process underlies the ‘classic’ inhibitory 
action of GABAARs.

The function of the GABAAR can be 
enhanced or attenuated using various 
pharmacological manipulations43,44,63. 
Benzodiazepines, formed from the union of 
the benzene and diazepine chemical rings64, 
are a class of synthetic GABAAR- positive 
allosteric modulators that can enhance 

GABAAR conductance. By enhancing 
GABAergic signalling, benzodiazepines 
typically have anti- seizure, sedative, hypnotic 
and anxiolytic properties. The effect of 
benzodiazepines on the brain is determined 
by the different subunit configurations of 
the GABAAR that are present and their 
relative distribution throughout the CNS52. 
Furthermore, the different benzodiazepine 
agents have distinct pharmacological 
profiles, which are related to their 
different binding affinities for various 
GABAAR isoform configurations65. The 
endogenous equivalents to benzodiazepines 
are endozepines66,67, which are released 
by astrocytes and are able to positively 
modulate GABAergic signalling68,69.

Effective binding of benzodiazepines 
to GABAAR depends upon a key histidine 
residue within the α- subunit70. This 
residue is present in all isoforms of the 
α- subunit except α4 and α6 (reF.71), and 
newer benzodiazepine agents are able to 
target specific isoforms52. Upon binding, 
benzodiazepine increases the affinity of 
the receptor to GABA72–74, which results 
in an increase in the frequency of channel 
opening, thereby increasing the conductance 
of the GABAAR75. Under typical conditions, 
this increase facilitates the influx of 
negatively charged Cl− ions, making it less 
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Fig. 1 | Socioeconomic and temporal differences in benzodiazepine-resistant convulsive status 
epilepticus. a | Reported resistance to first- line benzodiazepines (BZPs) in studies of convulsive status 
epilepticus (CSE) across countries with different economic profiles. The average rate of resistance to 
first- line BZPs was higher in studies from low- income and middle- income countries (LMIC) than in 
studies from high- income countries (HIC), as defined by the most recent World Bank Country and 
Lending Groups216 (mean ± s.e.m. 45.71 ± 5.97% in LMIC versus 28.39 ± 4.26% in HIC; P = 0.02, unpaired 
t- test). The mean ± s.e.m. reported resistance to BZPs across all studies was 35.97 ± 3.81%. b | The aver-
age rate of resistance to first- line BZPs was higher in studies in which the mean duration of CSE before 
first- line treatment was more than 60 min than in studies in which the mean duration of CSE was less 
than 60 min (mean ± s.e.m. 49.18 ± 7.71 min for >60 min duration versus 31.47 ± 4.51 min for <60 min 
duration; P = 0.03, unpaired t- test). c | Compared with those from HIC, studies from LMIC were more 
likely to report a mean duration of CSE prior to first- line treatment that was >60 min (66.67% versus 
21.43%; OR 7.33, P = 0.04, Fisher’s exact test). The original data and analysis code used to generate 
these plots are available at https://github.com/richardjburman/bzp_review. See Supplementary  
Fig. 1 for stratification of studies according to the age group and number of study participants 
(weighted point estimates and error margins are included). *P < 0.05.
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likely that neurons fire action potentials 
(Fig. 2b). This is the putative mechanism 
by which benzodiazepines are thought 
to stop seizures. The ultimate effect of 
benzodiazepines, however, is dependent 
on the functional properties of GABAARs, 
which can change with progressive seizure 
activity as discussed below.

What causes benzodiazepine 
resistance?
The pathophysiology of benzodiazepine 
resistance during status epilepticus can be 
broadly classified as having either inherited 
or acquired causes. The inherited causes 
relate to mutations in the genes that encode 
GABAARs (box 1). The acquired causes 
can be further subclassified. The first 
subclass relates to the pharmacokinetic 
and pharmacodynamic tolerance to 
benzodiazepines that occurs independent 
of status epilepticus (box 2). The second 
subclass of acquired causes relates to the 
changes in GABAAR physiology driven by 
the network hyperexcitability that occurs 
during status epilepticus. Although these 
different aspects are likely to operate in 

concert, this Review focuses specifically 
on the activity- dependent changes to 
the GABAAR that occur throughout the 
evolution of status epilepticus.

The transmembrane Cl− gradient
The GABAAR is primarily a Cl− channel. 
Therefore, the effects of modulating its 
conductance via benzodiazepine binding are 
governed by the state of the transmembrane 
Cl− concentration gradient. Overwhelming 
evidence from in vivo studies in animals 
and in vitro studies using both animal and 
human tissue shows that this gradient is 
dynamic and can change considerably as 
a function of development and the state of 
network activity76–82. These changes have 
implications for benzodiazepine resistance, 
as discussed below.

The resting gradient. The resting transmem-
brane Cl− gradient, and consequently the Cl− 
equilibrium potential, is established by multiple 
cellular factors including the Na+/K+ ATPase, 
impermeant anions, Cl− con ductances and 
Cl−–cation co-transporters76–78,83–85. However, 
only active or secondary active transport 

mechanisms for Cl−, such as the Cl−–cation 
co- transporters, are able to establish a 
driving force for Cl−78,83,86–88. That is, they 
are able to shift the Cl− equilibrium potential 
away from the resting membrane potential, 
thereby controlling the properties of 
GABAAR- mediated signalling. The  
Na+–K+–Cl− co- transporter (NKCC1) 
typically results in Cl− influx and a more 
positive Cl− equilibrium potential relative  
to the resting membrane potential, whereas 
the K+–Cl− co- transporter 2 (KCC2) 
extrudes Cl−, resulting in a more negative  
Cl− equilibrium potential relative to  
the resting membrane potential. These 
Cl−–cation co- transporters are differentially 
expressed across development — in 
immature neurons, the levels of KCC2 
expression are lower than the levels of 
NKCC1 expression77. This situation results 
in a higher intracellular concentration  
of Cl− ([Cl−]i) in younger neurons, which 
causes GABAergic signalling to be 
depolarizing. As neural tissues mature, 
neurons upregulate KCC2 expression relative 
to NKCC1 expression89. In this mature state, 
Cl− extrusion is increased, which results 
in a lower [Cl−]i and an inhibitory shift in 
GABA function. In rodents, this transition 
from GABAAR- mediated depolarization 
to hyperpolarization occurs during early 
postnatal life90–93, whereas GABA has been 
reported to be already hyperpolarizing in 
healthy human cortex at term, presumably 
reflecting interspecies differences in rates 
of development94–97. Understanding the 
contributions of NKCC1 to development 
and disease is complicated by the fact that 
unlike KCC2, NKCC1 is also expressed in 
non- neuronal cells such as oligodendrocytes 
and endothelial cells, as shown by single- 
cell transcriptomic studies in rodents 
and humans96,98,99. This underscores the 
importance of functional evidence for 
the contribution of NKCC1 to [Cl−]i 
and GABAergic responses in neuronal 
populations. For example, data from rodent 
brain slices indicate that NKCC1 contributes 
to subcellular effects, such as raised Cl− levels 
in the axons of cortical pyramidal neurons100, 
which support depolarizing GABAergic 
responses to inhibitory synaptic inputs that 
target the axon initial segment101.

Effect of seizures. Seizures can change the 
expression and activity of both KCC2 and 
NKCC1, with these effects developing over 
tens of minutes to hours. Multiple in vitro 
studies using rodent brain tissue have 
shown that ongoing seizure activity induces 
a decrease in the function and surface 
expression of KCC2, which reduces the 
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Cl− extrusion capacity of neurons36,102–105. 
This decrease is accompanied by an 
increase in the relative expression and 
activity of NKCC1 (reFs106,107). For example, 
in a study using rat hippocampal slices, 
the NKCC1 antagonist, bumetanide, was 
used to demonstrate the contribution of 
NKCC1 to depolarizing GABA responses 
in neurons following status epilepticus, 
and a corresponding shift in the ratio of 
KCC2 to NKCC1 mRNA expression was 
also observed108. Both of these changes 
were observed in ex vivo human brain 
tissue from patients with intractable 
epilepsy caused by different aetiologies 
when compared with control tissue that 
came from patients undergoing surgery for 
non- epilepsy- related brain pathology109–112. 
Therefore, prolonged seizure activity, of 
at least tens of minutes, seems to induce 
a reversal in the relative expression levels 
of Cl−–cation co- transporters, resulting 
in expression patterns similar to those 
observed earlier in development. These 
changes increase baseline Cl− levels, but 
also render neurons more susceptible to 
activity- induced Cl− accumulation. Taken 
together, such alterations are predicted to 
weaken GABAAR- mediated inhibition and 
thus reduce the potential for enhancing 
inhibition through allosteric modulation  
of the receptor by benzodiazepines.

Although Cl−–cation co- transporters 
primarily determine the baseline [Cl−]i, they 
also influence whether Cl− accumulates 
in neurons over shorter time scales 
(seconds to minutes), which is associated 
with increased network activity. During 
relatively quiescent periods, [Cl−]i is low 
(typically around 5 mM), which equates to a 
reversal potential for the GABAAR (termed 
EGABA) of approximately −70 mV. When 
GABAARs are activated, the transmembrane 
Cl− gradient typically favours Cl− influx, 
causing membrane hyperpolarization and 
an inhibitory action via the GABAAR. KCC2 
uses the transmembrane K+ gradient to 
extrude Cl− in order to maintain low [Cl−]i 
and hence maintain EGABA at levels negative 
to the resting membrane potential. Under 

these conditions, the inhibitory function  
of the GABAAR is preserved60,104 (Fig. 3a).

Investigations in animal models 
have shown that an increase in network 
activity, whether physiological or during 
the build- up to seizures, causes enhanced 
synaptic GABA release and GABAAR 
activation113,114. This strong GABAAR activity 
generates large Cl− influxes that cause rises 
in [Cl−]i

61,115–118. Such Cl− influx is enhanced 
when GABAAR activation is combined with 
concomitant membrane depolarization 
via glutamate receptors119. EGABA therefore 
can become more positive relative to the 
resting membrane potential, although EGABA 
might remain below the action potential 
threshold. In this state, GABAAR- mediated 
inhibition is effectively weakened and will 
inhibit by “shunting” or facilitating the 
effects of simultaneous glutamate receptor 

activation, depending on the relative 
location and timing of synaptic inputs120,121. 
These conditions are accompanied by 
increased K+ extrusion and a rise in the 
concentration of extraneuronal potassium 
([K+]e)122 (Fig. 3b). If network activity 
increases further, as is seen during seizures, 
the combined effect of increasing [Cl−]i 
and [K+]e can overwhelm the Cl− extrusion 
capabilities of KCC2 (reF.123). This increased 
Cl− accumulation depolarizes EGABA beyond 
the action potential threshold36,124. In this 
state, subsequent GABAAR activation can 
be sufficiently depolarizing that it will 
trigger action potentials36,124. In other words, 
GABAergic signalling will have become 
excitatory (Fig. 3c).

Therefore, activity- dependent (that is, 
seizure- dependent) changes in [Cl−]i can 
subvert GABAAR inhibitory signalling 
and sustain abnormal network activity. 
This short- term change in GABAAR 
signalling as a function of a change in 
the transmembrane Cl− gradient has 
been referred to as ‘short- term ionic 
plasticity’77,81,119. Such short- term, 
activity- dependent excitatory shifts in 
GABAergic signalling can occur during 
both self- terminating and self- perpetuating 
seizures36,123–127. This process is further 
aggravated by seizure- induced changes in 
the expression of Cl−–cation co- transporters 

Box 1 | genetic mutations in gABAArs affect benzodiazepine sensitivity

various mutations of the GaBaa receptor (GaBaar) directly affect benzodiazepine binding and 
could therefore contribute to benzodiazepine resistance in status epilepticus. a mutation in  
the γ2- subunit, (γ2(r43Q)), is known to increase the rate of desensitization of the receptor to 
benzodiazepines217. Mutations can also disrupt the interface between the γ- and β- subunits, 
negatively affecting channel function72. in addition, evidence indicates that some mutations  
can cause an increase in γ- subunit trafficking, thereby decreasing the availability or function  
of benzodiazepine- sensitive GaBaars at the synapse218. However, these mutations are typically 
associated with epileptic encephalopathies, such as Dravet syndrome219,220, and are therefore likely 
to be relevant to benzodiazepine resistance in only a certain number of patients who develop 
status epilepticus in the context of distinct electroclinical syndromes.

Box 2 | Benzodiazepine- related pharmacokinetic and pharmacodynamic tolerance

acute or previous chronic exposure to benzodiazepines or other compounds (including anti- 
seizure medications) can reduce the efficacy of benzodiazepines, with individualized susceptibility 
to this phenomenon221,222. evidence from both experimental and clinical studies demonstrates that 
this reduction in efficacy can initially occur by induction of pharmacokinetic tolerance223. in this 
context, pharmacokinetic tolerance refers to any mechanism by which other medications change 
the bioavailability of the benzodiazepines. For example, many anti- seizure medications share com-
mon breakdown pathways via the cytochrome P450 enzyme system224,225. People with epilepsy who 
have previously received treatment with, for example, carbamazepine, phenytoin and phenobarbi-
tal (all known to induce the cytochrome P450) are likely to need higher doses of benzodiazepines 
as first- line agents to treat status epilepticus, owing to the induced increase in the ability to break 
down benzodiazepines226. another important consideration is the baseline physiology of the 
patient and any other comorbid diseases (especially those affecting hepatic and renal function) 
that would further impact the metabolism of benzodiazepines227.

By contrast, pharmacodynamic tolerance refers to how the sensitivity of the GaBaar to benzodi-
azepine changes after acute or chronic exposure228. evidence from animals and humans shows that 
both short- term and long- term benzodiazepine use causes changes within the CNs that ultimately 
affect the ability of the GaBaars to be positively modulated by these agents221,228–230. Multiple  
studies have demonstrated how tolerance to the sedative, hypnotic and anti- seizure effects of 
benzodiazepines can emerge relatively rapidly, while the anxiolytic effects appear to be more 
resistant231–233. evidence from animal and human studies suggests that continued benzodiazepine 
use could drive multiple downstream effects that culminate in benzodiazepine tolerance. First, 
persistent exposure to benzodiazepines leads to a loss of allosteric coupling between GaBa and 
benzodiazepine binding sites on the GaBaar, potentially via changes in receptor assembly or 
phosphorylation patterns234. second, there might be alterations in the assembly, membrane 
trafficking and synaptic accumulation of GaBaars235. third, there might be compensatory changes 
in glutamatergic neurotransmission236. Fourth, there might be interactions between various 
G- protein- coupled receptors and the GaBaar through concurrent activation of serotonergic237, 
dopaminergic238 and muscarinic239 pathways. Last, benzodiazepines have also been shown to 
cause changes in neurosteroid signalling240.

Nature reviews | Neurology

P e r s P e c t i v e s



0123456789();: 

(mentioned above), which make neurons 
more susceptible to Cl− accumulation. 
box 3 discusses the role of Cl− in seizure 
pathogenesis and efforts to target this 
process therapeutically.

Alterations to GABAAR
During status epilepticus there seems to be 
internalization and reconfiguration of the 
GABAAR that leads to a marked reduction 

in benzodiazepine sensitivity starting several 
minutes after the onset of seizure activity. In 
several studies using in vivo animal models, 
increased mobility and internalization of 
the synaptic, benzodiazepine- sensitive 
configuration of the GABAAR was observed 
after 10 min of status epilepticus128–131. This 
phenomenon was observed with different 
techniques in cell culture and acute brain 
slice preparations using both optical and 

electrophysiological measures of GABAAR 
function. More specifically, seizure activity 
caused a downregulation of the α1–4-, β2–3- 
and γ2-subunits, which are essential for the 
formation of the benzodiazepine binding 
site129,131,132. Concurrently, the expression of 
extrasynaptic, benzodiazepine- insensitive 
GABAARs increased, as demonstrated by 
an observed upregulation of the α5- and 
δ- subunits that are important components 
of extrasynaptic GABAARs and responsible 
for tonic inhibition130,131,133 (Fig. 4). Collectively, 
these processes represent an acquired change 
in GABAAR structure that contributes to 
benzodiazepine resistance occurring over 
the course of minutes to hours of ongoing 
seizure activity.

Although the results of studies in animals 
indicate that receptor internalization can start 
to develop after 10 min of status epilepticus134, 
this internalization becomes progressively 
more pronounced after 30 min130 and 
60 min128. These seizure- induced changes in 
the benzodiazepine sensitivity of GABAAR 
can be long- lasting. For example, in resected 
brain tissue from individuals who have 
multidrug- resistant temporal lobe epilepsy 
and have experienced recurrent seizures for 
many years, expression of GABAARs with 
benzodiazepine binding sites was lower 
than in tissue from autopsies of individuals 
without neurological conditions135,136. In PET 
studies, which allow the analysis of human 
GABAAR composition in vivo, participants 
with refractory epilepsy had a decrease in 
benzodiazepine- binding affinity at the site 
of seizure origin — the so- called ictogenic 
focus137,138.

Effect on benzodiazepine efficacy
Under the conditions of profound Cl− 
loading that occur during seizures and 
status epilepticus in animal models, 
benzodiazepines are predicted to lose 
their efficacy or even perhaps exacerbate 
seizure- like activity by enhancing excitatory 
GABAergic signalling36,124,126,139. In a study 
using dissociated rat neuronal cultures, 
Cl− accumulation during ongoing network 
activity was associated with a reduced 
inhibitory effect of diazepam139. More 
recently, in a study using in vitro rodent 
brain slice models, status epilepticus- induced 
increases in Cl− and the resulting excitatory 
shift in GABAergic signalling were associated 
with a progressive loss in the efficacy of 
diazepam36. In addition, in brain slices with 
progressive status epilepticus- like activity 
and Cl−- loaded neurons, the application 
of diazepam exacerbated the severity of 
epileptiform discharges. Last, in a study in 
rats, pharmacologically blocking NKCC1 
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www.nature.com/nrneurol

P e r s P e c t i v e s



0123456789();: 

rescued benzodiazepine sensitivity in  
status epilepticus140.

Taken together, these data suggest 
that during status epilepticus there 
is a preferential shift away from 
phasic, benzodiazepine- sensitive 
GABAergic inhibition, towards tonic, 
benzodiazepine- insensitive GABAergic 
excitation. Multiple processes are involved 
and are likely to occur in parallel across 
different timescales from minutes to hours 
(Fig. 5). In our opinion, these insights 
gleaned from basic epilepsy research are 
likely to explain the clinical phenomenon of 
progressive benzodiazepine resistance that 
emerges in status epilepticus of prolonged 
duration (Fig. 1b). Changes to the GABAAR 
configuration and the capability of neurons 
to extrude Cl− are also likely to persist 
after the termination of status epilepticus, 
potentially contributing to the development 
of epilepsy and persistent benzodiazepine 
insensitivity in affected individuals.

Role of glutamatergic signalling
The changes in the function of 
GABAAR- mediated inhibition during status 
epilepticus are also linked to glutamatergic 
signalling through the N- methyl- d- aspartate 
receptor (NMDAR). It has been shown 
in a rodent hippocampal culture model 
of status epilepticus that prolonged 
seizure activity causes a widespread and 
persistent activation of NMDARs that 
initiates an increase in intracellular calcium 
concentration ([Ca2+]i)141. This rise in 
[Ca2+]i has then been shown to activate 
multiple second- messenger pathways (for 
example, protein kinase C, calcineurin and 
extracellular signal- regulated kinases), 
which can decrease the expression of 
both phasic and tonic GABAARs through 
complementary pathways131,142–145. In 
addition, evidence from rat neuronal 
cultures indicates that NMDAR- mediated 
Ca2+ influx can downregulate KCC2 
function, thereby reducing the inhibitory 
capacity of the GABAARs that are 
expressed103. Furthermore, the elevated 
[Ca2+]i has been implicated in the  
activation of mechanisms that upregulate  

the expression of NMDARs as well  
as the other main glutamatergic receptor,  
the α- amino-3- hydroxy-5- methyl-4- 
isoxazolepropionic acid receptor 
(AMPAR)129,146. The net result is  
an enhancement of glutamatergic  
excitation combined with a reduction  
in GABAAR- mediated inhibition which 
serves to both exacerbate the ongoing 
seizure activity and severely compromise  
the efficacy of benzodiazepines147.

Is a new treatment approach needed?
The experimental data discussed above 
suggest that resistance to benzodiazepines 
involves multiple mechanisms that affect 

GABAAR function and operate on a range 
of timescales, including the timescale of 
an individual status epilepticus episode. 
This view is supported by the clinical 
observation that episodes of status 
epilepticus longer than 60 min seem to show 
greater resistance to benzodiazepines14,36,37 
(Fig. 1). Therefore, an argument could be 
made that patients who present in status 
epilepticus that has lasted over 60 min, or 
patients who have previously presented 
in status epilepticus, might benefit from a 
more tailored treatment approach that does 
not include benzodiazepines as first- line 
management. Such a strategy might speed 
up the delivery of the most efficacious 
interventions and thus help reduce the 
morbidity and mortality associated with 
prolonged status epilepticus. Although this 
concept is appealing in theory, currently no 
clinical evidence exists to support the use 
of alternative anti- seizure medications as 
first- line management of status epilepticus. 
Therefore, benzodiazepines remain the 
gold standard as they are cheap, safe and 
effective, if given at the correct time and at 
an adequate dose.

Box 3 | role of Cl− in the pathogenesis of status epilepticus

Computational modelling of ion dynamics during seizures has implicated increasing levels of 
intraneuronal Cl− in extending seizure activity and contributing to the development of status 
epilepticus241. the important role of Cl− in the pathogenesis of status epilepticus and efforts to 
manipulate Cl− extrusion are, therefore, of increasing therapeutic interest242,243. For example, 
recent studies have explored manipulating Cl− influx and efflux to study how this affects the 
evolution of seizure activity. attempts have been made to modulate KCC2 function through 
overexpression244 or by preventing seizure- induced phosphorylation- dependent KCC2 
inactivation245, with both approaches significantly limiting the severity of seizure activity.
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However, if we were to consider a 
possible candidate as an alternative first- line 
treatment, what should this be? One rational 
approach to this question would be to 
consider the most effective second- line agent 
in the case of benzodiazepine resistance in 
status epilepticus. In the past 3 years, large 
multicentre studies have explored the 
efficacy of second- line agents in both adult 
and paediatric patients with CSE9–11. In the 
Established Status Epilepticus Treatment 
Trial (ESETT), the results of which were 
published in 2019, more than 50% of 
participants who received second- line 
treatment with levetiracetam, valproate 
or fosphenytoin did not respond to 
treatment9,31. One agent, however, that has 
been excluded from the recent multicentre 
studies as a second- line treatment option 
is phenobarbital. Evidence from an in vitro 
model of status epilepticus- like activity in 
rodent brain slices has shown that at low 
doses phenobarbital augments epileptiform 
activity36. This effect is likely to result from 
low- dose phenobarbital having a strong 
GABAAR agonist43 effect, which renders 
it vulnerable to the same changes in 
GABAAR physiology that affect the action 
of benzodiazepines. However, at high doses, 
phenobarbital seems to be very effective at 
terminating persistent status epilepticus- like 
activity in animal models36. This action is 
attributed to pharmacological effects other 
than its action on GABAARs — at higher 
concentrations, phenobarbital is also an 
effective antagonist of AMPA and kainate 
glutamatergic receptors148–150. Therefore, 
phenobarbital might maintain anti- seizure 
activity, even in brain areas of modified 
GABAAR expression or with profound 
intraneuronal Cl− accumulation.

Phenobarbital has been shown to be 
an effective agent for the treatment of 
refractory CSE and is still widely used in 
resource- limited health- care systems8,151. 
For example, in a cohort of adult patients 
presenting with benzodiazepine- resistant 
CSE in China, intravenous phenobarbital 

was effective in 81% of the participants 
who received it, whereas intravenous 
valproate was only effective in 44% of treated 
participants151. In a study of paediatric 
patients with benzodiazepine- resistant CSE 
in a resource- limited setting, phenobarbital 
was effective in 86% of patients and was 
more effective than the more widely used 
phenytoin8. A concern exists that respiratory 
depression can follow a bolus injection of 
phenobarbital. However, evidence indicates 
that this adverse event occurs in a small 
number of patients — ~13% of treated 
adults152 and ~14% of treated children8 — 
which does not seem to be significantly 
different from its occurrence following 
treatment with other anti- seizure medications 
such as levetiracetam (~8% of treated adults9 
and ~10% of treated children10), fosphenytoin 
(~13% of treated adults9), phenytoin (~11% 
of treated children10) and valproate (~8% of 
treated adults9).

Chronic treatment with phenobarbital 
can be associated with neurobehavioural 
and cognitive adverse effects153–159. However, 
the evidence does not suggest that the same 
occurs when phenobarbital is used in an 
acute setting160–164. This information should 
inform cost–benefit calculations to decide 
whether the need to stop status epilepticus 
outweighs the potential negative effects of 
phenobarbital on cognition. These kinds 
of calculations are already well established 
in other clinical situations, such as the acute 
use of valproate to manage status epilepticus 
in pregnant women despite its well- known 

teratogenicity165. A major barrier to the 
further use of phenobarbital, especially in 
resource- limited countries, is that suppliers 
have reduced production owing to the 
limited profitability and the restrictive 
regulations for access to barbiturates166.

Last, one might also consider moving 
away from first- line monotherapy with 
benzodiazepines and instead combine 
them with other agents that exhibit 
synergistic effects. There are new, 
emerging treatment options that target 
more specific mechanisms of status 
epilepticus pathophysiology than current 
treatment protocols and might prove to be 
effective for the safe termination of status 
epilepticus167–169. Specifically, clinically 
available agents that target NMDARs 
(that is, ketamine) and AMPARs (that is, 
perampanel) are appealing prospects as 
these receptors seem to be upregulated 
in status epilepticus, and also contribute 
to the degradation of GABAAR- mediated 
inhibition170–172. To date, the evidence 
is insufficient to support the use of 
these agents in the early management 
of status epilepticus, but this situation 
might change with the completion of 
ongoing clinical trials173–175. Encouraging 
evidence from animal studies indicates 
a revival of benzodiazepine efficacy in 
models of resistant status epilepticus when 
benzodiazepines are combined with agents 
that target other systems. These include 
the combination of a benzodiazepine 
(either diazepam or lorazepam) with 
the NMDAR competitive antagonist 
3-(2-carboxypiperazin-4-yl)-propyl-1- 
phosphonic acid176 or the K+ channel 
activator flupirtine177. Further clinical 
studies into the use of these synergistic 
treatment combinations are needed and 
for now benzodiazepines remain the gold 
standard for first- line management of status 
epilepticus.

Unanswered questions
In this Perspective article, we have 
presented both clinical and experimental 
data that highlight the importance of 

Synaptic GABA
A
R internalization

Onset 
of status 
epilepticus

30 min 60 min 24 h

 CI– accumulation and a shift towards excitatory GABA
A
R signalling

GABA
A
R reconfiguration and extrasynaptic expression

Decreased expression of KCC2

10 min

Increased expression of NKCC1
EstablishedInitiated

Fig. 5 | Proposed timeline of changes affecting benzodiazepine efficacy during status epilepti-
cus. Changes to Cl− homeostasis are shown in blue and changes to GABAA receptor (GABAAR) expres-
sion are shown in red. KCC2, potassium–chloride co- transporter; NKCC1, sodium–potassium–chloride 
co- transporter.

Box 4 | Non- convulsive status epilepticus

Non- convulsive status epilepticus (NCse) occurs when there is continuous or repetitive seizure 
activity seen electrographically with or without cognitive and behavioural changes, but without 
any motor (convulsive) manifestations4,246. Convulsive status epilepticus (Cse) and NCse can exist 
in a continuum, whereby a patient can transition from Cse to NCse, and vice versa. unlike the vast 
amount of literature on the use of benzodiazepine in the management of Cse, there is a dearth of 
studies on the management of NCse. this situation is likely to be a result of the difficulties in diag-
nosing this NCse outside a setting where there is access to continuous eeG monitoring247. Overall, 
67% of patients in NCse do not respond to first- line treatment with benzodiazepines152,248–250. this 
rate is approximately 1.5 times higher than that of Cse and is likely, at least in part, to result from 
delays in recognition and treatment initiation for NCse.
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benzodiazepine- resistant CSE and provide 
information about some of the mechanisms 
that are likely to underlie this clinical 
phenomenon in adults and children. The 
relevance of these insights into other 
forms of status epilepticus, namely NCSE 
and neonatal status epilepticus are briefly 
discussed in box 4 and box 5.

Trying to bridge the gap between 
clinical and experimental domains of status 
epilepticus is a challenge and unanswered 
questions around how benzodiazepine 
responsiveness can vary across different 
types and durations of status epilepticus 
remain. For example, although experimental 
and clinical data provide an explanation of 
how benzodiazepine resistance increases 
with duration of status epilepticus, 
many individuals present in prolonged 
CSE and yet still respond to first- line 
benzodiazepines. Similarly, studies in 
both adults13,178,179 and children8,180 have 
shown that in many individuals who seem 
to be resistant to first- line treatment with 
benzodiazepines, such as intravenous 
lorazepam, rectal diazepam or intranasal 
midazolam, an infusion of midazolam or 
diazepam is able to successfully terminate 
the CSE13. This observation remains poorly 
understood. On the basis of information 
from experimental studies, one possible 
explanation for the inter- individual 
variation in benzodiazepine sensitivity is 
that across the brain there are differential 

responses to these agents, with some areas 
being benzodiazepine- resistant and other 
areas remaining benzodiazepine- sensitive 
(Fig. 6). For example, in actively seizing 
neuronal networks with raised [Cl−]i and 
[K+]e, GABAergic signalling would be 
excitatory and benzodiazepines ineffective. 
In contrast, in other less- affected areas, 
[Cl−]i might be low and GABAergic 
inhibition would be intact; thus a 
benzodiazepine would enhance inhibition 
in these brain areas. The combined effect 
of a benzodiazepine would therefore be 
a function of which, and to what extent, 
different brain areas have been recruited 
into the seizure. These ideas are supported 
by computational modelling studies 
of seizure propagation dynamics that 
demonstrate how area- specific inhibitory 
capacity directs the temporal and spatial 
spread of activity181,182.

Translation from ‘bench to bedside’ 
is rarely seamless. This challenge is 
evident in the numerous potential novel 
treatments that work in animal models of 
status epilepticus but fail to generate any 
meaningful clinical benefit when tested 
in patients. One example of this kind of 
situation is the use of bumetanide to treat 
neonatal status epilepticus (box 5). Similarly, 
the neurosteroid allopregnanolone, which 
selectively targets extrasynaptic GABAAR183, 
had anti- seizure effects in both acute 
and chronic animal models of seizures184. 

However, studies of this agent for the 
management of status epilepticus in humans 
have produced conflicting results185–187 
and neurosteroids are not conventionally 
used in the current management of status 
epilepticus. Learning from the examples 
of bumetanide and allopregnanolone, 
therefore, excitement should be tempered 
when preclinical studies reveal new potential 
treatments. Instead, we should continue to 
exercise patience until high- quality clinical 
data are available.

Concluding remarks
Benzodiazepine resistance remains a 
pressing, global clinical problem within the 
management of status epilepticus. Clinical 
studies have shown that the duration of 
status epilepticus before first treatment is 
an important factor in determining the 
likelihood of benzodiazepine resistance. 
This conclusion is supported by evidence 
from animal models, which demonstrates 

Box 5 | Neonatal status epilepticus

Neonatal status epilepticus is best considered as a separate entity from paediatric and adult status 
epilepticus, as synaptic signalling mechanisms in neonates differ considerably from those in the pae-
diatric and adult brain78,217,251,252. expression of Cl− co- transporters changes during development76, 
which could result in higher levels of Cl− in the neonatal brain than in the adult and paediatric brain. 
these high levels of Cl− might cause GaBaergic signalling to be less inhibitory and even depolariz-
ing. this situation is combined with a relatively smaller contribution of glutamatergic synaptic activ-
ity under physiological conditions253–256. as development progresses, K+–Cl− co- transporter 2 (KCC2) 
is upregulated relative to Na+–K+–Cl− co- transporter (NKCC1), lowering Cl− and promoting inhibi-
tory GaBaergic signalling, which balances the associated maturation in the number and strength  
of glutamatergic synapses257–260.

the result of higher intraneuronal Cl− in the neonatal brain is that positive allosteric modulators 
of GaBaa receptors (GaBaars) are less effective in terminating seizure activity, and could exacer-
bate status epilepticus261. For example, a common feature of neonatal status epilepticus is the 
absence of a clinical presentation to accompany the electrographic seizure activity, particularly  
in very sick or preterm neonates262. this phenomenon, often referred to as ‘electroclinical uncou-
pling’, can also be induced by the administration of GaBaar modulators such as benzodiazepines 
or low- dose phenobarbital263–269. electroclinical uncoupling in neonates might be attributed to 
regional differences in intraneuronal Cl− concentrations. For example, Glykys et al.270 showed that 
a lower intraneuronal Cl− favouring GaBaar- mediated hyperpolarization emerges in subcortical 
regions before cortical regions in rodent in vitro models. This more nuanced understanding of 
GaBaergic signalling in the neonatal brain, particularly regarding the potential role of neuronal 
NKCC1, has inspired further exploration into how manipulating this co- transporter might affect 
neonatal seizures and potentially rescue anti- seizure effects of GaBaar modulators261,271–275,279. 
Clinical trials have investigated whether blocking NKCC1 with bumetanide has a measurable 
clinical benefit on neonatal seizures276,277. However, owing to mixed outcomes and safety concerns, 
whether the use of adjuvant bumetanide is safe and effective in the management of neonatal 
status epilepticus is not yet known278.

glossary

Co- transporters
Transmembrane proteins that allow the coupled, 
simultaneous transport of multiple substances across 
the membrane.

Equilibrium potential
The electrical potential difference at which the flow  
of ions down their transmembrane concentration 
gradient is exactly balanced by the opposing potential 
difference across the membrane; at the equilibrium 
potential there is no net flux of ions.

Ionotropic receptor
a ligand- gated ion channel in which ligand binding 
results in transmembrane ion flux through the 
receptor’s pore.

Phasic inhibition
The fast activation of synaptic gabaa receptors 
following pre- synaptic release of gaba.

Resting membrane potential
The electrical potential difference across the cell 
membrane at rest (that is, when the cell is not receiving 
synaptic input or engaged in action potential firing).

Secondary active transport
The transport of chemical substances across a 
membrane (also known as co- transport), where  
the energy to move one substance against its 
concentration gradient is provided by the movement  
of another substance down its concentration gradient.

Shunting
a type of inhibition whereby activated gabaa receptors 
lower the local membrane resistance, which reduces  
(or ‘shunts’) the impact of concurrent excitatory 
synaptic inputs.

Tonic inhibition
The continuous activation of perisynaptic and 
extrasynaptic gabaa receptors owing to the presence 
of ambient gaba in the extracellular space,  
or spontaneous gabaa receptor openings.
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that during persistent seizure activity, 
GABAergic synaptic transmission alters 
in multiple ways that can contribute to 
progressive benzodiazepine resistance. 
Although some inconsistencies remain 
between clinical and experimental studies, 
evidence suggests that the time since onset of 
status epilepticus should be considered as a 
critical factor in determining the probability 
of benzodiazepine responsiveness, and 
in status epilepticus that is prolonged at 
presentation, adjunctive therapy should be 
considered very early. An understanding 
of the cellular and molecular mechanisms 
underlying benzodiazepine resistance 
gleaned from experimental studies should 
inform the optimization of future strategies 
for managing status epilepticus.
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