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Abstract

Many neurons in the mammalian central nervous system have complex dendritic arborisa-

tions and active dendritic conductances that enable these cells to perform sophisticated

computations. How dendritically targeted inhibition affects local dendritic excitability is not

fully understood. Here we use computational models of branched dendrites to investigate

where GABAergic synapses should be placed to minimise dendritic excitability over time. To

do so, we formulate a metric we term the “Inhibitory Level” (IL), which quantifies the effec-

tiveness of synaptic inhibition for reducing the depolarising effect of nearby excitatory input.

GABAergic synaptic inhibition is dependent on the reversal potential for GABAA receptors

(EGABA), which is primarily set by the transmembrane chloride ion (Cl-) concentration gra-

dient. We, therefore, investigated how variable EGABA and dynamic chloride affects den-

dritic inhibition. We found that the inhibitory effectiveness of dendritic GABAergic synapses

combines at an encircled branch junction. The extent of this inhibitory accumulation is

dependent on the number of branches and location of synapses but is independent of

EGABA. This inhibitory accumulation occurs even for very distally placed inhibitory synap-

ses when they are hyperpolarising–but not when they are shunting. When accounting for Cl-

fluxes and dynamics in Cl- concentration, we observed that Cl- loading is detrimental to

inhibitory effectiveness. This enabled us to determine the most inhibitory distribution of

GABAergic synapses which is close to–but not at–a shared branch junction. This distribution

balances a trade-off between a stronger combined inhibitory influence when synapses

closely encircle a branch junction with the deleterious effects of increased Cl- by loading that

occurs when inhibitory synapses are co-located.

Author summary

Dendritic branches allow for a rich repertoire of computational capabilities for neurons

within the brain. Inhibitory synaptic inputs, which utilise the neurotransmitter GABA,
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refine and enhance dendritic computations. They are traditionally viewed with regards to

their inhibitory effect on action potential generation at the neuronal cell body. Here, we

studied the local effects of inhibitory synapses on excitability in dendrites. We also consid-

ered the dynamic nature of inhibition that deteriorates the longer it is active due to intra-

cellular chloride ion loading. The central goal of our investigation was to find the best

locations for multiple inhibitory synapses to maximise their combined inhibitory effec-

tiveness on nearby excitation in the dendritic tree. We found that the optimal distribution

is when inhibitory synapses closely encircle a branch junction, without being co-located at

the junction itself. This maximises how their inhibitory influence combines whilst mini-

mising the deleterious effects of chloride loading.

Introduction

A typical layer 2/3 cortical pyramidal neuron can have thousands of synaptic sites from hun-

dreds to thousands of neurons [1–3]. A neuron’s ability to integrate synaptic input over multi-

ple time scales and physical spatial domains is possible due to the physical structure and

electrochemical properties of its dendrites [4–6]. Dendrites enable neurons to perform a broad

array of possible computations [7]. Experimental and theoretical results over the last few

decades have shifted the characterisation of dendrites from simply the input domain of neu-

rons to a neuronal domain with rich computational complexity [8–13].

The theoretical understanding of signal propagation in dendrites was established by several

seminal studies [14–19]. This understanding was grounded in the assumption that dendrites

are passive. We now know that they also possess active properties driven by NMDA, voltage-

gated calcium (Ca2+), and voltage-gated sodium (Na+) channels [20], which adds to the com-

plexity of dendritic processing [6,21]. The traditional view of inhibition in dendrites has

focused on its effects at the soma. That is, how does dendritic inhibition change the excitatory

current that reaches the soma, which affects the activation of non-linear processes there or at

the axon initial segment. Due to the experimental challenges involved in recording from den-

drites, the somato-centric view has been more prevalent to-date. In contrast to this somato-

centric viewpoint, it has now become clear that many neurons possess dendrites with non-lin-

ear conductances (e.g. NMDA receptors, voltage-gated Ca2+, Na+ and K+ channels as well as

HCN channels). It is now thought that dendritic branches could act as individual non-linear

integration zones; meaning that single neurons could represent the biological equivalent of

multi-level artificial neuronal networks [13,22,23]. This points to the importance of also con-

sidering a dendro-centric viewpoint, i.e. how does dendritic inhibition control local dendritic

excitability?

In this vein, a recent computational study found that dendritic inhibition can lessen den-

dritic excitability more effectively when inhibitory synapses are located farther from the soma

than an excitatory source, “off-path”, as opposed to being positioned between the soma and

excitation, “on-path” [21]. Because of the dendro-centric viewpoint of this finding, it is not

contradictory but rather complementary with studies that show that “on-path” inhibition is

more effective at preventing action potential generation at the soma [16,24–26].

To date, investigations into inhibition’s dampening effect on dendritic excitability have

paid little attention to the inhibitory reversal potential [21], or how this could change over

time with continued synaptic drive [26,27]. However, fast dendritic inhibition is predomi-

nantly mediated by type A γ-aminobutyric acid receptors (GABAARs) and to a lesser extent

glycine receptors, both of which are primarily permeable to chloride ions (Cl-) [28–30]. As a

result, the inhibitory reversal potential depends on the transmembrane Cl- gradient, which is a
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dynamic variable that can change depending on the balance of Cl- ion fluxes into and out of

dendritic processes [26,31] with implications for the effects of GABAergic signalling [32,33].

Previous experimental and modelling studies have shown that because of their small volume,

dendrites are particularly susceptible to activity-dependent Cl- accumulation and shifts in the

inhibitory reversal potential (EGABA) [27,34–37]. However, how Cl- dynamics and different

inhibitory reversal potentials affect dendritic inhibition’s ability to control dendritic excitabil-

ity has not previously been investigated. We used computational models built using the NEU-

RON modelling framework to answer the important question, “Where should inhibitory

synapses be placed within a branched dendrite to minimise dendritic excitability over time?”

We first extended a metric established by Gidon and Segev [21], which allowed us to quan-

tify the effectiveness of synaptic inhibition of different reversal potentials (EGABA) on nearby

dendritic excitatory input. We termed this metric the “Inhibitory Level” (IL). Second, we

employed this metric to demonstrate that inhibition accumulates at an encircled branch junc-

tion. This inhibitory accumulation is dependent on the number of branches and location of

inhibitory synapses but is largely independent of EGABA. Third, we find that hyperpolarizing

inhibition accumulates at branch points even for very distally placed inhibitory synapses. This

is not the case for shunting inhibition, where there is an optimal distance from a branch junc-

tion where inhibitory synapses should be located to maximise inhibitory accumulation.

Fourth, we find that adding more inhibitory synapses increases absolute dendritic inhibition,

but that the extent of inhibitory accumulation across a tree is maintained. Fifth, by accounting

for Cl- dynamics we demonstrate that the Cl- loading that occurs during continuous inhibitory

synaptic input erodes the effectiveness of absolute dendritic inhibition. However, this does not

reduce the ability for dendritic inhibition to accumulate. As a result, we find that the optimal

placement of inhibitory synapses to maximise dendritic inhibitory effectiveness is close to, but

not precisely at, a shared branch junction. This placement balances a trade-off between

enhanced inhibitory accumulation when inhibitory synapses encircle a branch junction with

the deleterious, cumulative effects of Cl- loading when inhibitory synapses are close together.

The addition of a Cl- sink emphasises the functional role non-active branches can have on pre-

venting Cl- loading and improving inhibition.

Methods

Multiple synaptic inputs, together with passive channels throughout the neuron and any cur-

rent applied externally, caused a change in membrane voltage in each dendritic compartment

according to:

Cm
dVm

dt
¼ � gpas VmðtÞ � Vrestð Þ � Isyn tð Þ þ Iaxial tð Þ þ Iext tð Þ

where Cm is the membrane capacitance (1 μF), Vm is the membrane potential, gpas is the leak

channel’s conductance (0.05 mS, the inverse of the membrane input resistance, 20 MΩ), Vrest

is the resting membrane potential (-65 mV), Isyn is the sum of synaptic currents, Iaxial is the

sum of axial currents and Iext is externally applied current (0.001 nA). See Table 1 for abbrevia-

tions, constants, and parameter values.

Axial currents between compartments j and k were calculated using Ohms law with an axial

resistance Raxial of 0.1 MΩ � cm-1:

Iaxial ¼
Vm;j � Vm;k

Raxial
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Table 1. Symbols, constants, parameters, and variables.

Description

Symbols

C Coulombs unit

Ca2+ Calcium ions

Cl- Chloride ions

d Location of input current, in electrotonic units

Δ Delta, colloquially meaning difference between or change in something

E Reversal potential, the value of which there is no net flow of current for that transmembrane channel

or ion species

gGABA Time-varying conductance for GABAAR

GABA γ-aminobutyric acid, the neurotransmitter released by interneurons

GABAAR GABA type A receptor that mediates fast inhibitory synaptic transmission when GABA is bound

GABABR GABA type B receptor that mediates slow inhibitory synaptic transmission when GABA is bound

Glutamate Primary neurotransmitter released by pyramidal cells in cortex and hippocampus

HCO3 Bicarbonate ions

i Location of inhibitory synaptic input, in electrotonic units

I Current in amperes (A). Inward current is negative by convention

ICl� Chloride ion current through a channel

IHCO�
3

Bicarbonate ion current through a channel

IGABA Total current through GABAAR

IL or ILi
d Inhibitory Level. The impact that an inhibitory synapse at location i would have on an input current at

location d. i and d are typically omitted whereby i is fixed and d is varied. Defined as
Vd � Vi

d
Vd

(see

Variables).

IL0

ILd = i

Inhibitory Level at the junction of multiple dendritic branches

Inhibitory Level at the inhibitory synapse i

ILstat Inhibitory Level determined with static chloride

ILdyn Inhibitory Level determined with dynamic chloride

K+ Potassium ion

KCC2 Type 2 potassium-chloride cotransporter

Mg2+ Magnesium ion

Na+ Sodium ion

NKCC1 Type 1 sodium potassium chloride cotransporter

NMDA N-methyl-D-aspartate, which selectively activates the NMDA receptor, a mediator of slow excitatory

synaptic transmission when glutamate is bound

Vol Volume of neuronal compartment

X Electrotonic unit. Proportion of the space constant, which is a measure of how far voltage will travel

within a neuronal compartment as it attenuates with distance

Constants Value

F Faraday’s constant 96485 s�A�mol−1

R Ideal gas constant 8.3145 J�K−1�mol−1

T Absolute temperature (= 37˚C) 310.15 K

Parameters Default Value

[Cl-]o Extracellular chloride concentration 135 mM

[HCO3
-]o Extracellular bicarbonate concentration 23 mM

[HCO3
-]i Intracellular bicarbonate concentration 12 mM

αGABA GABAA receptor binding rate [61] 5 mM-1 ms-1

βGABA GABAA receptor unbinding rate [61] 0.18 ms-1

DCl� Chloride diffusion constant [62] 2.03 μm2 ms-1

(Continued)
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A synapse’s input (current, Isyn) was defined according to its activation (conductance, gsyn)

and its driving force (the difference between Vm and the synapse’s reversal potential, Esyn) to

drive a current into or out of the neuron:

Isyn ¼ gsyn ðVm � EsynÞ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

driving force

Where each term depended on time, t. Synaptic input depended on the flow of ions across

the neuronal membrane, through the synaptic channel, according to their electrochemical gra-

dients, Esyn. Synaptic conductances reduce the membrane input resistance, which can elicit

“shunting inhibition” in synapses when Vm = Esyn, and thereby act as a ‘sink’ for current travel-

ling along its path. For convenience, we defined the difference between the resting membrane

potential (Vrest) and the reversal potential for an inhibitory synapse (EGABA) as

rEGABA ¼ EGABA � Vrest

Note that although this appears similar to the definition for driving force, which changes

with Vm and EGABA,rEGABA only changes with EGABA. Inhibitory synapses were, there-

fore, classified as shunting (rEGABA = 0 mV) or hyperpolarising (rEGABA < 0 mV).

The effects of inhibitory synaptic input are not just local changes in Vm, but also the propa-

gation of voltage, given by the cable equation [38], and the spread of lowered input resistance

along a neuron [21]. We captured both of these effects in something we term the “Inhibitory

Level” (IL): the impact that an inhibitory synapse at a location i would have on an excitatory

input at location d. The IL was defined as

ILi
d ¼

Vd � V i
d

Vd
ð1Þ

where Vd is the time integral of voltage deflection at location d with no inhibition and Vd
i is

the time integral of voltage deflection at location d with inhibition at location i. More

Table 1. (Continued)

Description

Eleak or

Vrest

The resting membrane potential or reversal potential for the current leak

channel; the voltage of the neuron if there was no external current or synaptic

input

See Vm

gGABAmax Maximum conductance for a GABAA receptor 1 nS

gleak Conductance for the leak current 0.00021 μS

PKCC2 Pump strength of KCC2 to extrude Cl- along with K+ [26] 1.9297 x 10−5 mA

mM-2 cm-2

Variables Initial Value

[Cl-]i Intracellular chloride ion concentration 7.25 mM

ECl- Reversal potential for chloride ions at a GABAAR -78.13 mV

EGABA Reversal potential for a GABAAR -70 mV

rEGABA The EGABA relative to the resting membrane potential, Vm(t = 0)–EGABA -5 mV for ILdyn

Vm Membrane potential (voltage) -65.00 mV

Vd The integral of Vm with respect to resting Vm at location d.
R tþDt
t VmðtÞ � Vmðt ¼ 0Þdt

0 mV

https://doi.org/10.1371/journal.pcbi.1010534.t001
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explicitly,

Vd ¼

Z tþDt

t
VmðtÞ � Vrest dt

where Δt is the time window of integration (5 ms in Fig 1, 50 ms otherwise).

Although this formulation captures transient inputs, simulations had a constant injected

current, Iext = 0.001 nA, as the source of excitation (moved to different locations d), and inhibi-

tory synapse(s) were modelled as persistent conductance-fluctuating current, “gclamp”, as in

[24–26]. The gclamp mean conductance, hgi, was 0.001 μS, with a standard deviation of 0.1 ×
hgi. Gclamp inhibitory synapses were selectively permeable to both Cl- and HCO3

- ions (4:1

ratio). In order to accurately represent Cl- dynamics and Cl- loading via GABAARs, ICl� and

IHCO�
3

were calculated separately as follows:

IGABA ¼ ICl� þ IHCO�
3

ICl� ¼ w � gGABAðVm � ECl� Þ

IHCO�
3
¼ ð1 � wÞ � gGABAðVm � EHCO�

3
Þ

Fig 1. Inhibitory Level (IL) as a metric to assess the local efficacy of dendritic inhibition. (A) The effect that an inhibitory synapse at location i (downward

triangle) has on an excitatory input current at location d (circle) is termed the Inhibitory Level (IL). The IL at each location d, for stationary i at 0.4 X, is shown

for the full length of the dendrite. (B) The IL is calculated by recording the membrane potential with only excitation at d (solid black line) or excitation at d and

inhibition at i (dashed black line). The relative difference in the deflection of the membrane potential from rest, between Vd (without inhibition; shaded area)

and Vd
i (with inhibition; striped shaded area), is the IL (circles). IL with an integration time window Δt of 5 ms for d = 0.3 X (left, red circles) or d = 0.7 X

(right, red circles) shows that the steady-state IL is reached within 150 ms. Small circles are IL every 5 ms. Bigger circles are every 50 ms. (C) For shunting

inhibition, and given sufficient duration, the numerical calculation of IL (thin light grey line) matches the semi-analytical (medium thickness grey line) and

analytical (thickest, black line) solutions. The inhibitory synapse was modelled as a fluctuating GABAA conductance, hgi = 0.001 μS, σ2 = 0.1 × hgi, and the

excitatory input as a constant current, 0.001 nA. Cm = 1 μF � cm-2, L = 707 μm, r = 1.0 μm, Rm = 10 MO � cm-2, and Raxial = 0.1 MO � cm-1.

https://doi.org/10.1371/journal.pcbi.1010534.g001
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where χ represents the fraction of the total GABAergic current carried by Cl- and is given by:

w ¼
EHCO�

3
� EGABA

EHCO�
3
� ECl�

where the reversal potential for chloride (ECl-) and GABAA receptor (EGABA) was updated,

where applicable, throughout the simulation using the Nernst and Goldman-Hodgkin-Katz

equations, respectively:

ECl� ¼
R � T
F

ln
½Cl� �i
½Cl� �o

� �

EGABA ¼
R � T
F

ln

4

5
½Cl� �i þ

1

5
½HCO�

3
�i

4

5
½Cl� �o þ

1

5
½HCO�

3
�o

0

B
@

1

C
A

where R is the ideal gas constant, F is Faraday’s constant, and T is temperature (see Table 1).

The values for HCO3
- were held constant ([HCO3

-]i = 12 mM, [HCO3
-]0 = 23 mM, and

EHCO3
- = -17.39 mV). Transmembrane Cl- fluxes due to Cl- currents through GABAARs,

KCC2 co-transporters, as well as changes due to longitudinal/axial diffusion, as modelled in

[26], were calculated as

d½Cl� �i
dt

¼
ICl�

F � Vol
þ PKCC2 ½K

þ�i � ½Cl
� �i � ½K

þ�o � ½Cl
� �o

� �
þ DCl�

d½Cl� �i
dx

where PKCC2 is the “pump strength” of chloride extrusion (1.9297 x 10−5 mA/(mM2�cm2), K+

is the potassium ion, DCl� is the diffusion coefficient for chloride in water (2.03 μm2 ms-1), F is

Faraday’s constant, Vol is the volume of the compartment, and x is the longitudinal distance

between the midpoint of compartments.

The impact of time-varying EGABA (due to changes in [Cl-]i) on the IL was implicitly cap-

tured by Eq 1. Unless otherwise indicated, Cl- was static and EGABA was constant throughout

any simulation.

Distance was expressed in units of electrotonic distance (X) such that 1.0 X was one space

constant (λ). The space constant is a measure of how far voltage will travel within a neuronal

compartment as it attenuates with distance [39], and is defined according to

1:0 X ¼ l ¼

ffiffiffiffiffiffiffiffiffi
r Rm

2 Ra

s

where r is the radius of the dendrite, Rm is the membrane resistivity, and Ra is the axial resistiv-

ity. For a radius of 0.5 μm, Rm of 20 MO � cm2, and Ra of 0.1 MO � cm, the branch length was

707 μm. All branches were connected to a central compartment 0.01 μm long as in [21].

Simulations were performed with the NEURON modelling framework using the Python

interface [40,41]. Full code is available online at https://github.com/ChrisCurrin/chloride-

dynamics-and-dendrites.

Results

Inhibitory Level as a metric to assess the effect of dendritic inhibition on

dendritic excitability

We defined Inhibitory Level (IL) as an extension of the “shunt level” established by Gidon and

Segev [21] to account for voltage-dependent effects of hyperpolarising inhibitory synapses (see
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Eq 1 above). The IL measures the influence of an inhibitory synapse at location i on an excit-

atory input at location d. To determine a dendrite’s IL for a fixed i (e.g. at 0.4 X), d was varied

along the length of the dendrite (Fig 1A). The steady-state IL for a shunting synapse (that is,

rEGABA = 0 mV) on a single branch was highest at the site of the inhibitory synapse, as

found previously [21].

Fig 1B shows the time evolution of ILd = 0.3 (left, red circles) and ILd = 0.7 (right, red circles)

calculated from Vd (solid grey area) and V i
d (striped grey area). In both cases, the inhibitory

synapse location i was 0.4 X. Within 150 ms, IL reached its steady-state value. Because the neu-

ronal membrane is a capacitor and IL is calculated from Vm, the IL was taken at 150 ms (using

a 5 ms time integration window from 145 ms) unless otherwise stated.

The IL represents a change in membrane voltage deflection caused by inhibition. The IL

captures the spatial impact of an inhibitory synapse from both its conductance component,

measured as a change of input resistance, as well as its inhibitory post-synaptic potential

(IPSP). The IL is, therefore, equivalently.

ILi
d ¼

Rd � Ri
d

Rd
�

IPSP
Vd

ð2Þ

where Rd is the input resistance at location d with no inhibition, Ri
d is the input resistance at

location d with inhibition at location i (see also [42]), and IPSP is the inhibitory post-synaptic

potential. The IPSP is zero when a synapse is shunting–its reversal potential is the same as the

Vrest (rEGABA = 0 mV), as in Fig 1. In fact, the IL for shunting synapses can be analytically

calculated, as in Gidon and Segev [21]:

ILi
d ¼

gGABAiRi

1þ gGABAiRi

� �

Ai;d Ad;i ð3Þ

where gGABAi is the conductance of the inhibitory synapse at location i, Ri is the input resis-

tance of the neuron at location i, and Ai,d is the voltage attenuation from location i to d or vice

versa, which can be calculated using Rall’s cable equations [15].

The three methods to calculate IL (Eqs 1, 2, 3) for shunting synapses are equivalent (Fig 1C).

However, Eq 3 can be calculated analytically, Eq 2 can be computed semi-analytically using

NEURON to record Rd for arbitrary morphologies (along with Vd and IPSP), but Eq 1 needs to

be evaluated numerically and taken at the steady-state. Eq 1, however, has two advantages: it

works for time-varying input, and it captures both conductance and IPSP effects of inhibition,

which is an integral component of hyperpolarising synapses. We therefore used Eq 1 for calcu-

lating the IL for the remainder of this study. Note that the conductance and IPSP effects can be

disentangled by computing the input resistance along the dendrite and using Eq 2. Further-

more, time-varying input was explored in Gidon and Segev’s supplementary material [21].

Here, we focus on frequency-independent phenomena arising from inhibitory synapses.

Dendritic inhibition combines to suppress dendritic excitability at branch

junctions

The IL metric can be easily conceptually extended to the case of multiple branches. First, we

consider that multiple branches with inhibitory synapses can be depicted in various ways (Fig

2Ai). Consider, for example, a distal portion of the dendrite with three branches meeting a

fourth branch, or equivalently four branches from different parts of the dendrite converging,

or the final equivalent structure considered of four nearby branches converging onto a single

point (Fig 2Ai). Fig 2Aii shows the visual depictions used throughout this work for 1, 2, 4, 8,

and 16 branches with equal number of synapses.
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Fig 2. Dendritic inhibition has a cumulative effect at a dendritic junction. (A) A 4 branch dendrite morphology can be thought of as 3 branches joining into

an identical other branch, all branches coming from different directions, or as 4 branches joining together at a single point. These equivalent situations are

pictured in ‘Ai’, with the rightmost depiction used throughout. The morphologies for different number of branches with equal number of inhibitory synapses

are depcited in ‘Aii’. (B) The point of maximum Inhibitory Level (IL) for shunting inhibitory synapses at 0.2 X (downward triangle) shifts to the junction as the

number of dendritic branches increases, as shown by the heatmaps in ‘Bi-iii’ and summarised in ‘Biv’. The “max” and “min” in the IL heatmaps are the

maximum and minimum IL values for each morphology (in contrast to a shared heatmap across all morphologies). (C) When EGABA is set hyperpolarised to

the resting membrane potential (rEGABA< 0), the inhibitory synapse no longer only shunts (pure conductance-driven effect) but instead also has an

additional inhibitory postsynaptic potential (IPSP) contribution. ‘Ci-iii’ shows the IL heatmaps for 1 (Ci), 2 (Cii), and 4 (Ciii) equal dendritic branches for a

hyperpolarising inhibitory synapse at -1 mV below resting Vm. ‘Civ’ shows the corresponding IL values, along with morphologies with 8 or 16 branches. (D) IL

for an inhibitory synapse with anrEGABA of -2 mV. (D, inset) IL for 8 branches between the junction at 0.0 X and the inhibitory synapse at i (X = 0.2 in this

figure). The ratio between the IL at the junction (IL0) and the IL at i (ILd = i) is the Accumulation Index (AccIdx) and reflects the cumulative effect of inhibitory

synapses on multiple dendrites at a junction. (E) Accumulation Index as a function of the number of branches and the relative reversal potential (rEGABA) of

the inhibitory synapse (shade of downward triangles).

https://doi.org/10.1371/journal.pcbi.1010534.g002
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Using the IL metric, we sought to confirm the finding that inhibitory synapses on multiple

branches of a dendritic tree combine so that their cumulative inhibitory effect at a shared den-

dritic branch junction is greater than at the site of each inhibitory synapse, as demonstrated

for the case of shunting inhibition [21]. We found that the functional impact of the inhibitory

synapse on an excitatory source, as defined by the Inhibitory Level (IL), was maximised at the

junction of a tree with a sufficient number of branches (> 3); with each branch having a single

synapse at a consistent location (Fig 2). This was the case for both shunting inhibition (Fig 2B)

and hyperpolarizing inhibition (Fig 2C).

Given a shunting inhibitory synapse on each branch (at i = 0.2 X), increasing the number of

branches decreased the individual influence of each synapse at its own location, while main-

taining the same IL at the tree’s junction (Fig 2Biv). The IL for a low number of branches (� 2)

was, therefore, highest at the site of the shunting synapse (ILd = i; Fig 2Bi and 2Bii). However,

once trees with 4 branches (Fig 2Biii) or higher (Fig 2Biv) were considered, then the IL at the

junction was higher than at the shunting synapse. This was consistent with the findings of

[21]. Also, IL at the junction (IL0) for shunting inhibition remained stable (� 0.4) for each tree

independent of the number of branches. In contrast, for inhibitory synapses with hyperpolar-

izing reversal potentials (rEGABA = -1 mV, Fig 2C andrEGABA = -2 mV, Fig 2D), IL

increased both at the synaptic location, ILd = i, and at the shared branch junction, IL0, for

increasing numbers of branches (Fig 2C). More generally for hyperpolarizing inhibition, IL at

each d increased with more branches and synapses.

Next, we sought to quantify how much IL (inhibitory effectiveness) accumulated at the

shared branch junction relative to the IL at the location of the inhibitory synapse. To do so, we

created a metric which we termed the “Accumulation Index” (AccIdx) formulated as

AccIdx ¼
IL0

ILi
ð4Þ

where the inhibitory synapse location i was typically 0.2 X, as shown in Fig 2D inset. The AccIdx

can be intuitively understood as a relative view of dendritic inhibition; specifically, how much

more inhibitory the GABAergic synapse is at the junction compared to its insertion location at i.

To understand the influence of reversal potential on the accumulation of inhibitory effective-

ness at a dendritic junction, the AccIdx was investigated as a function of the number of branches

and inhibitory reversal potential (Fig 2D). When a dendritic tree had more branches (with each

having an inhibitory synapse), the AccIdx increased approximately linearly for the case where

inhibition was hyperpolarising and clearly sub-linearly when inhibition was shunting. Interest-

ingly, the relative amount of IL accumulation at a junction for a given number of branches was

approximately the same regardless of reversal potential when EGABA was hyperpolarising.

In summary, while IL accumulated more at any junction with more negative inhibitory rever-

sal potentials, the relative IL at the junction compared to the IL at the synapse itself (AccIdx)

stayed consistent. That is, a more negative reversal potential (with the same EGABA at every

GABAergic synapse) increased IL at both the synapse and junction by the same proportion.

Increasing the number of branches caused a greater accumulation of IL at the junction.

Increasing branch occupancy with inhibitory synapses enhances Inhibitory

Level at the junction, but complete branch occupancy saturates the relative

accumulation of inhibition

To investigate the contribution of each synapse to the overall IL (how much a subset of inhibi-

tory synapses suppresses the excitatory current at any particular location in the dendritic tree),

the number of inhibitory synapses was varied while the number of branches stayed the same.
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As the “effective number of synapse”–the percentage of branches which have synapses,

100�
number of synapses
number of branches

� �
– was increased, the IL also increased at both the synapse and junction

(Fig 3). Fig 3A and 3B demonstrates a dendrite with 4 branches and a varying number of

inhibitory synapses (rEGABA = 0 mV). Although having 1 synapse on 4 branches (25% effec-

tive number of branches, Fig 3Ai and 3B, thinnest green line) had a strong IL at the inhibitory

synapses’ branch, the IL attenuation was rapid. That is, the other “silent” or “unoccupied”

branches were minimally influenced by the inhibitory synapse.

When the total number of synapses on branches was increased (75% effective number of

branches, Fig 3Aii and 3B, thin green line), the branches with inhibitory synapses began to

benefit each other mutually and had an increased IL. The combined effect of inhibitory synap-

ses strongly influenced the IL at the synapses themselves (ILd = i), the IL at the junction (IL0),

with the combinatory effect spilling over into the “silent” branches. At 100% effective number

of synapses, the results were the same as before (Fig 3Aiii and 3B medium green line). When

each branch had 2 synapses per location (each at i = 0.2 X, 200% effective number of synapses,

Fig 3Aiv and 3B thickest green line), the IL further increased along the dendrites. The same

general pattern was evident for different numbers of branches (Fig 3C) andrEGABAs (Fig

3D). In addition, when some branches had more synapses than others (e.g. 150% effective

number of synapses), the IL0 was naturally shared between them but the IL along the branches

differed between those with and without extra synapses due to the total gGABA at i. This led to

cases where the AccIdx for branches with fewer synapses were greater than branches with

more synapses, yet the branches with more synapses had the greater IL (see Fig 3F inset).

When inhibitory synapses continued to be added, their added inhibitory benefit diminished

(Fig 3E). For large effective number of synapses, inhibitory synapses would already be over-

whelming excitatory input so that additional inhibitory synapses would hardly affect the out-

come (Vd
i for 350%� Vd

i for 400% effective number of synapses). Although there was only

saturation in IL0 for a large effective number of synapses (Fig 3E), the AccIdx reached its peak

at 100% effective number of synapses regardless of the number of branches orrEGABA. This

maximal value was reached every multiple of 100%, when every branch had the same number

of synapses, but only whenrEGABA < 0 mV. In contrast forrEGABA = 0 mV, AccIdx

reached its global max at 100% and lower local max values for every subsequent multiple of

100%. Interestingly, 100% for four branches and 50% for eight branches have the same number

of synapses (4) but the AccIdx is greater for eight branches whenrEGABA < 0. This result

echoed the previous finding that more branches enhance the AccIdx whenrEGABA < 0.

For dendrites with an unequal number of synapses per branch (e.g. 150%), the AccIdx was sub-

maximal for branches with extra synapses (Fig 3F, main panel and inset), while the AccIdx contin-

ued to increase for those branches with fewer synapses. The branches with more synapses increased

the IL along the dendrite, including at the junction, IL0. The branches without extra synapses had a

larger IL0 than their own ILd = i, while the branches with extra synapses had a smaller IL0 than their

own ILd = i. Regardless, the difference in AccIdx between branches with and without extra synapses

is diminished as the effective number of branches increases (Fig 3F, inset). The sharing of a junction

for multiple branches with a mixed number of synapses, therefore, benefited some branches more

than others in terms of AccIdx. Collectively these results show how differential occupation of

branches with inhibitory synapses cumulatively affects local dendritic inhibitory efficacy.

The location and distribution of inhibitory synapses determine how

inhibition accumulates at a branch junction

The simulations presented thus far had kept the inhibitory synapses at a constant location rela-

tive to the branch junction. Furthermore, the distribution of inhibitory synapses had been
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Fig 3. Increasing branch occupancy with inhibitory synapses enhances Inhibitory Level at the junction but saturates relative inhibitory accumulation.

(A) The percentage of dendritic branches which have inhibitory synapses, “effective number of synapses”, indicates the diminishing return in additional IL

when adding more synapses. (Ai-iv) 4 branch structure with 1 (Ai, 25%), 2 (Aii, 75%), 4 (Aiii, 100%), or 8 (Aiv, 200%) inhibitory synapses (rEGABA = 0 mV).

Note that inhibitory synapses are located at 0.2 X, so for 8 synapses on 4 branches (200%), there are 2 synapses per location. (B) IL as in ‘A’ for the effective

number of synapses
number of synapses
number of branches

� �
. Thinner lines indicate a lower effective number of synapses. Note that there is no “r” marker for branches without

synapses, “silent branches”. (C) As in ‘B’ but with 8 branches. Thus, 75% effective number of synapses for 8 branches is 6 of the branches with synapses and the

other 2 without synapses. Inset, 150% (12/8) effective number of synapses has some branches with a single synapse and others with 2 synapses. The branches

with extra synapses have stronger IL values while the branches without extra synapses have a moderately better IL than 100% effective number of synapses. (D)

As in ‘B’ and ‘C’, but the synapses on the 4 branches each haverEGABA = -2 mV. (E) The IL for shunting synapses (lower portion) and IL for hyperpolarising

synapses (upper portion) at the junction for 4 and 8 branches with inhibitory synapses either atrEGABA = 0 mV or 2 mV. Line and marker colours same as in

‘F’. (F) Accumulation Index for different dendritic structures when varying the effective number of synapses. Regardless ofrEGABA or number of branches,

the AccIdx is maximised at 100% effective number of synapses. As in Fig 2,rEGABA< 0 mV is shifted fromrEGABA = 0 mV. Note that the number of

synapses is equal for 8 branches with 50% effective number of branches and 4 branches with 100% effective number of branches (4 synapses). Inset, the AccIdx

for branches without extra synapses (short dashes) are greater than those with extra synapses (long dashes) because these branches utilise the boosted IL0
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consistent across the dendritic tree such that each synapse was at the same distance from the

junction (“Tree” distribution). Therefore, we next explored how varying the location and dis-

tribution of inhibitory synapses on a branch affected the Inhibitory Level.

To do so, the IL was investigated for different inhibitory synapse locations (placed an equal

electrotonic distance from the branches’ junction). For a dendritic arbour of 4 branches,

shunting inhibitory synapses typically had their maximal IL at the synaptic site itself (regard-

less of distance from the junction), as demonstrated by example morphologies (Fig 4A, top

row,rEGABA = 0 mV). In contrast, hyperpolarising inhibitory synapses had their maximal

IL at the junction regardless of synapse location (Fig 4A, bottom row,rEGABA = -2 mV).

Hyperpolarising inhibitory synapses, therefore, more effectively produced cumulative inhibi-

tion at sites distal from the synapse locations.

When comparing inhibitory synapse locations for a dendrite with 4 branches, IL at the

hyperpolarising inhibitory synapse location (ILd = i) increases with proximity to the junction

(Fig 4B, bottom). In contrast, ILd = i for a shunting inhibitory synapse is greatest at the junction

but weakest near the middle of the branches (Fig 4B, top). Shunting synapses benefitted from

branches’ terminals by constraining the input resistance attenuation. When voltage attenua-

tion was more of a factor, as in hyperpolarising synapses, then the constrained input resistance

was dwarfed by the influence of voltage spread.

As suggested by Fig 4A and 4B, the AccIdx increased with more distal synapse locations

whenrEGABA = -2 mV. In contrast, the AccIdx forrEGABA = 0 mV peaked at i = 0.2 X

(Fig 4C). Both of these patterns were applicable for more than 4 branches but not 2 and less

(Fig 4D). The case for 1 and 2 branches confirmed that these properties only hold once a

branching threshold has been reached, which agreed with results from Fig 2D.

To investigate the non-linear effects of synaptic distributions, the “Tree” distribution for 4

branches was compared to a case where all synapses were evenly distributed on a single

branch, “Branch”, and a case where all the synapses were concentrated at a single location on a

single branch, “Focal” (Fig 4E). ForrEGABA = -2 mV, the maximum IL of the dendritic

arbour was different for each distribution. The “Tree” distribution produced the highest IL at

the junction (X = 0). The “Focal” distribution predictably had the highest IL at the site of all

the inhibitory synapses (X = 0.2), yet interestingly this was still not higher than the IL at the

junction produced by the “Tree” distribution. The “Branch” distribution had a broadly raised

IL over most of the branch (Fig 4F). The synaptic distributions of inhibitory synapses, there-

fore, showed different trade-offs in suppressing excitatory input (Fig 4F).

The “Tree” distribution was effective at suppressing the junction the best, which meant

inhibitory synapses could be on separate branches a fair distance from the source of depolari-

sation and yet strongly impacted excitatory current that travelled through the dendrites (Fig

4E and 4F, green and also Fig 2B). However, the suppression of excitatory input farther along

the branch (X closer to 1) would be weaker. Extending this to a more realistic pyramidal neu-

ron morphology with a large amount of distal excitatory input and primarily proximal inhibi-

tory input [43], GABAAR synapses on the proximal dendrites can still affect the main trunk

even if they are on branches and not directly targeted on the trunk.

The “Branch” distribution had a more uniform IL across its targeted dendrite, while the

remaining branches had depressed IL (Fig 4E and 4F, lilac). This distribution would be benefi-

cial if the excitatory source was itself spread on that branch. Finally, the “Focal” distribution

facilitated by the branches with extra synapses. However, the difference in AccIdx between branches with and without extra synapses decreases with the

number of synapses.

https://doi.org/10.1371/journal.pcbi.1010534.g003
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would maximally target an excitatory source at the same location, but the rest of the dendrite

would be left susceptible. The branch selectivity of the “Branch” and “Focal” distributions,

therefore, trade-off their gains for weaker ILs on their silent branches (Fig 4F, lighter colours).

A neuron’s dendrite might use several inhibitory distribution strategies that change over time

in response to activity.

Fig 4. Location and distribution of inhibitory synapses differentially affect the Inhibitory Level. (A) Heatmaps show the maximum IL (rEGABA = 0 mV,

light green markers, top row orrEGABA = -2 mV, dark green markers, bottom row) for different inhibitory synapse locations, i, on a 4-branch dendritic

structure. The inhibitory synapses are evenly placed from the junction (0.0 X in left column, 0.5 X in centre column, 0.8 X in right column). (B) The IL

(rEGABA = 0 mV, top andrEGABA = -2 mV, bottom) for each inhibitory synapse location i, in electrotonic units X, on a 4-branch dendrite. Each trace

represents recordings at every excitatory input location D along the dendrite for a given synapse location i. Inhibitory synapses at the junction, i = 0 X, elicit the

greatest IL. ILd = i for shunting synapses (rEGABA = 0 mV) is the lowest when inhibitory synapses are between the junction and the end of the dendrite (0.4

X), yet ILd = i for hyperpolarising synapses (rEGABA = -2 mV) is the lowest at the end of the dendrite (1.0 X). (C) The AccIdx for 4 branches with

hyperpolarising synapses (rEGABA = -2 mV) continues to increase, albeit with saturation, with farther locations for inhibitory synapses. Shunting synapses

(rEGABA = 0 mV), however, have their greatest AccIdx when i = 0.2 X. (D) The different trends in AccIdx between shunting (Di) and hyperpolarising (Dii)

inhibitory synapses, as in ‘C’, holds for dendrites with more than 2 branches. For dendrites with 1 or 2 branches, the AccIdx is greatest when i = 0.0 X. For

greater numbers of branches, the maximum AccIdx depends on whether the synapse is shunting or hyperpolarising. (E) The maximum IL is dependent on the

distribution of the synapses. A dendrite with 4 branches can have 4 synapses placed in different configurations: evenly spaced from the junction on each branch

(“Tree”), evenly spaced along a single branch (“Branch”), or all placed at a single location on a single branch (“Focal”). Inhibitory synapses were

hyperpolarising (rEGABA = -2 mV). (F) The IL values for the synapse distributions in ‘E’. Although the Tree configuration (green) produces an accumulative

IL at the junction, the Focal distribution (turquoise) has the largest absolute IL (at d = i = 0.2 X), and the Branch distribution (lilac) facilitates a more even IL

along its branch. However, both the Branch and Focal distributions are branch-selective and hence have to trade-off their gains for weaker ILs on their silent

branches (lighter colours).

https://doi.org/10.1371/journal.pcbi.1010534.g004
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Inhibitory Level is strongly influenced by dynamic chloride over time

Inhibitory current not only depends on a neurotransmitter-driven conductance change but also

the voltage-dependent driving force of the inhibitory synapse. Along with time-varying conduc-

tance, the driving force can change over time as the membrane potential becomes depolarised by

excitatory current and the reversal potential of the GABAAR (EGABA) increases as Cl- flows into

the cell and is not sufficiently compensated for by Cl- extrusion mechanisms [44].

The impact of accounting for dynamic Cl- on the IL was investigated over time for a single

branch (Fig 5Ai) as well as 4 branches (Fig 5Aii) with consistent inhibitory location, i = 0.2,

initialrEGABA of -5 mV, and constant excitatory input as previously mentioned. Along with

heatmaps of absolute IL over time for both static Cl- (where intracellular Cl- levels were held

static, ILstat) and dynamic Cl- (where intracellular Cl- levels were allowed to fluctuate, ILdyn),

the difference in IL (ΔIL = ILstat−ILdyn), the relative IL at a time point, and EGABA were also

shown in Fig 5A. The heatmaps in Figs 1–4 have used the relative IL, indicated by “min” and

“max” instead of absolute values. The development of IL over time was recorded at the inhibi-

tory synapse location (ILd = i), i = 0.2 X, for both static Cl- (Fig 5B, dash-dot lines) and dynamic

Cl- (Fig 5B, solid lines), as well as the ΔIL (shaded area, same heatmaps as in Fig 5A).

It was immediately apparent that with ongoing synaptic input, the IL of dendrites with

dynamic Cl- decreased compared to the same dendrite with static Cl- (Fig 5A and 5B). Addi-

tionally, a dendrite with dynamic Cl- took longer to reach its steady-state IL value, which

would require Cl- influx at the synapse to be matched by [Cl-]i extrusion mechanisms. In most

cases, this had not occurred by the end of a 1 s simulation (Fig 5B). Underlying the difference

in IL between a dendrite with static Cl- and dynamic Cl- was an increase in EGABA focused at

i even though its effect, ΔIL, was more broadly apparent across the dendrite (Fig 5A). Because

Cl- diffuses slowly along the dendrite, compared to voltage propagation, EGABA changes

remained relatively localised during 1s of synaptic input (Fig 5A).

We next sought to determine how dynamic Cl- might affect the relative accumulation of IL at the

shared branch junction as compared to the site of inhibitory synaptic input (AccIdx). Although IL is

dependent on EGABA, Fig 2D suggests that for negativerEGABA, the relative difference between

IL at the inhibitory synapse and IL at the junction, i.e. the AccIdx, remains relatively constant. To con-

firm constant AccIdx during changingrEGABA, due to the influence of dynamic Cl-, the ΔIL at the

synapse, ΔILsynapse (Fig 5C, solid line, left y-axis), and ΔIL at the junction, ΔILjunction (Fig 5C, dotted

line, right y-axis), were plotted for multiple branches. In each case, although the absolute values were

different, the trajectories matched. Considering both changes are in proportion, the AccIdx remains

constant over time for each branch structure, after an initial period of capacitance charge (Fig 5E).

Similarly, the change in EGABA was approximately the same for each dendritic structure

(Fig 5D). Along with the EGABA heatmaps in Fig 5A, these results indicate that changes in

EGABA were relatively localised when i = 0.2 X. Thus, the AccIdx seemed to be independent

of EGABA during simulations with dynamic Cl-. However, there was a dependence on the

number of branches as previously established (Fig 2D).

Together, these results show that local changes of EGABA at the synapse caused broad

depression in ILdyn across the dendrites over time. Although ILdyn changed differently along a

dendrite, the AccIdx remained constant. Thus, the accumulation of GABAergic synapses’

inhibitory efficacy still occurs even as their absolute efficacy diminishes.

Dynamic chloride differentially changes the efficacy of dendritic inhibition

and dictates optimal synapse distributions

One of the goals of dendritic inhibition is to maximise the suppression of nearby depolarizing

excitatory current. For the case of static Cl-, IL would necessarily be greatest when all the
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Fig 5. Chloride loading and shifts in EGABA progressively impact Inhibitory Level, but not Accumulation Index, over time. (A)

IL and related properties calculated at different points in time (5, 250, 500, 750, and 1000 ms), with a backward time integration

window, Δt, of 5 ms. At 5 ms. A dendrite with a single branch, ‘Ai’, and a dendrite with four branches, ‘Aii’, is shown. IL with static Cl-

(ILstat), and IL with dynamic Cl- (ILdyn), are identical. However, while ILstat reaches its steady-state by the next time point, ILdyn

continues to decrease. Note that the heatmap is shared across time as well as IL with static or dynamic Cl-. The difference between ILstat

and ILdyn, the IL Difference (ΔIL), is strongly focused at the site of the inhibitory synapse but spreads throughout the dendrite over

time even while changes in EGABA remain local. The relative ILdyn (ILdyn scaled between that dendrite’s minimum and maximum

ILdyn) indicates that although ILdyn changes over time, the changes are proportional. InitialrEGABA was -5 mV (EGABA = -70 mV,

Vm = -65 mV). (B) IL over a 1000 ms period for both a single-branch dendrite, ‘Bi’, and four-branch dendrite, ‘Bii’. With prolonged

input (1000 ms), ILstat decreases until the membrane capacitance is charged and ILdyn stabilises when an equilibrium is reached

between Cl- influx (via GABAARs) and efflux (via KCC2). (C) The ΔIL at the synapse (solid lines, left y-axes) and ΔIL at the junction

(dotted lines, right y-axes) remain in proportion to each other over time, regardless of the number of branches in the dendrite. Note

that the scales are different for each axis. These are location-specific traces of what is represented across the dendrite in “Relative IL”
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inhibitory synapses are located at a shared branch junction (ILd = i = 0, Fig 4). However, given

the results presented so far, it is not clear that this would remain the case for the more realistic

case of dynamic Cl-. To determine how dynamic Cl- impacts IL and how this depends on

inhibitory location, the IL for co-located excitatory and inhibitory input, ILd = i, was investi-

gated in single and four branched dendrites with varying inhibitory locations, i. Simulations

were run for 500 ms with initialrEGABA at -5 mV and allowed to vary when Cl- was dynamic

(see Methods).

For a single dendrite, the ILd = i for static Cl- (ILstat; Fig 6A, first heatmap row and Fig 6B,

inverse triangles) had little deviation and was symmetrical around the maximum IL, which

was at X = 0.5. The ILd = i for dynamic Cl- (ILdyn; Fig 6A second heatmap row and Fig 6B, tri-

angles), was lower compared to ILstat for every inhibitory synapse location, and much lower at

the ends of the branch (i� 0 Fig 6B, left inset, and i� 1 Fig 6B, right inset). This drop-off in

ILdyn at the ends demonstrates the integral role of Cl- diffusion in reducing Cl- loading: Cl-

could only diffuse in a single direction at the branch ends.

For a dendrite with four branches, as demonstrated previously, ILstat was highest at the

junction (i = d = 0 X) and decreased with distance from the junction (Fig 6C, first heatmap row

and Fig 6D, inverse triangles). However, for the case of dynamic Cl-, the ILdyn (IL with dynamic

Cl-) was highest near–but not at–the junction. This demonstrated how Cl- accumulation weak-

ened inhibition when the synapses were collocated at the junction. That is, Cl- flux through the

collocated inhibitory synapses resulted in larger local increases in Cl- concentration and positive

shifts inrEGABA. It was only when the inhibitory synapses were located a sufficient distance

away from the junction and each other (Fig 6D, left inset), i.e. i� 0.05 X from the junction, that

this was ameliorated and ILdyn reached its maximum value (Fig 6C, second heatmap row and

Fig 6C, triangles). The effects of elevated EGABA through Cl- loading when all four synapses

were located at, or very close to, the junction were also evident when we plotted the IL differ-

ence (ΔIL, the difference between IL with static Cl- and IL with dynamic Cl-) as well as heatmaps

of EGABA (Fig 6C and 6D). Thus, although ILdyn at or close to a junction may be highest ini-

tially (-5 mVrEGABA), with continued inhibitory synaptic drive, this ILdyn would become the

weakest due to each inhibitory synapse contributing to a highly pooled Cl- load (� 0 mV

rEGABA). Lower left and right insets in Fig 6D further highlight the degraded ILdyn for

dynamic Cl- which occurred at junctions and sealed ends (i = 0 and i = 1, respectively).

Our results thus far have indicated a trade-off between maximising IL by having inhibitory

synapses at junctions with an initial very negative EGABA, and the cumulative degrading effect

that pooled inhibitory input has on the IL due to Cl- loading. The “sweet spot” for an inhibitory

location, therefore, lies a small distance away from a junction where Cl- can diffuse away in multi-

ple directions, but inhibitory effects can still accumulate at the shared branch point. This multi-

directional diffusion works to help prevent pooling of multiple Cl- currents, which could over-

whelm local Cl- extrusion. This “sweet spot” distance from the junction depends on the number

of branches, number of inhibitory synapses, strength of inhibition (strongly related to the rate of

Cl- influx), Cl- extrusion rate, Cl- diffusion rate, and the size of the neuronal compartments.

Finally, in the context of realistic Cl- dynamics, we specifically explored how different syn-

aptic distributions at different locations over the entire dendrite, might drive the greatest

dampening of dendritic excitability, i.e., drive the maximum IL. The only constraint we

heatmaps. (D) EGABA at the synapse (solid lines) increases from -70 mV (-5 mVrEGABA) to� -67.5 mV over 1000 ms as in ‘A’.

EGABA at the junction changes only marginally (dotted lines). Vertical dashed lines indicate the time at which EGABA reaches the

corresponding horizontal integer values,r(t). (E) The proportional decrease in IL across the dendrite manifests as a consistent AccIdx,

except for during the initial few milliseconds when the membrane capacitance is charging. The AccIdx depends on the number of

branches, but not on EGABA or ΔIL.

https://doi.org/10.1371/journal.pcbi.1010534.g005
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Fig 6. Dynamic chloride has a differential effect on Inhibitory Level depending on the location of inhibitory

synaptic input. (A) Heatmaps of a single-branched dendrite indicate how IL with static Cl- (ILstat) and IL with

dynamic Cl- (ILdyn), the difference between these (ΔIL) are differentially affected by inhibitory synapse location (0.0,

0.2, 0.4, 0.6, 0.8, 1.0 X). In addition to heatmaps with values shared across synapse location, the relative IL heatmaps are

independent of each other and indicate the IL throughout a dendrite scaled to that dendrite’s minimum and maximum
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applied was that although synapses could be placed anywhere, the total number of inhibitory

synapses equalled the total number of branches for any given simulation. Put another way,

given the same number of synapses as branches, where should these be placed to drive the

maximum possible IL in a dendritic tree? We performed this with the three different synaptic

distributions: encircling a junction, “Tree”, all at the same place, “Focal”, or all distributed on a

single branch, “Branch”.

Fig 7 summarises our findings where the “sweet spot” distance for maximising IL while mit-

igating Cl- loading depended on the number of branches and the distribution of the inhibitory

synapses (Fig 7A). Because previous results indicated the site of greatest inhibitory effect was

either at the inhibitory synapse itself or at the junction, we specifically simulated recording

from both locations to see their different responses. As before, dendrites with the “Tree” distri-

bution had their maximum IL at the junction (IL0) when the inhibitory synapses were placed

close to, but not at, the junction (� 0.07 X). With an increased number of branches, the site of

maximum IL0 remained the same. The maximum IL at the inhibitory synapses (ILd = i) for the

“Tree” distribution was reached when the inhibitory synapses were located near 0.05 X.

Increased numbers of branches with synapses shifted the maximum ILd = i closer to the junc-

tion. Note that for 4 branches, the maximum ILd = i (as in the second “Tree” panel in Fig 7A

and in Fig 6D) was at 0.05 X whereas the maximum IL0 (first panel in Fig 7A) was at 0.07 X,

which was also the maximum IL overall (as shown in Fig 7B).

If all the synapses were on top of each other, as in the “Focal” distribution, then the Cl- for all

the inhibitory synapses would be concentrated in one area. This focal point worsens Cl- loading

by multiple inhibitory synaptic activation in a limited volume segment with a restricted space for

Cl- to be cleared via diffusion and surface-bound Cl- extrusion mechanisms. This typically resulted

inrEGABA becoming positive, especially for many synapses, and negating the inhibitory effect

of GABAergic transmission. Spreading the inhibitory synapses evenly along a branch, “Branch”

distribution, resulted in broad, but relatively low maximum IL (Fig 7A, rightmost panel).

In summary, encircling a junction (“Tree”) was most effective at dampening excitation,

with the maximum IL occurring at the junction itself when inhibitory synapses were placed at

0.07 X away (Fig 7B). For a low (� 2) number of branches, the maximum IL was at the inhibi-

tory synapse itself (ILd = i). However, for 4 and greater branches, the maximum IL was always

at the junction (i.e. max IL = max IL0). To highlight these placements, they were visualised

with both IL and EGABA, relative to that neuron, and the optimal inhibitory synapse locations

(downward triangles) and maximum IL (arrowhead) indicated (Fig 7C).

A parent branch acting as a chloride sink ameliorates chloride loading to

shift optimal inhibitory synapse placement towards the junction

In the previous result (Figs 6 and 7), strong Cl- loading occurred when inhibitory synapses

were placed near the junction, and hence near each other. The pooling of Cl- was also

IL. Values for EGABA are also represented for each synapse location and indicate local changes in EGABA. All values

are taken after 500 ms. (B) IL with d at i, ILd = i, for both static Cl- (inverse triangles) and IL with dynamic Cl-

(triangles). The difference (ΔIL) is indicated by the shaded region. Left inset and right inset, when the inhibitory

synapse is located near the ends of the branch, each ILdyn is dramatically lower than its ILstat counterpart due to Cl-

loading. (C) Same as in ‘A’ but for a four-branch dendrite. Due to multiple branches sharing a junction, the difference

between ILstat and ILdyn are largest at the junction (0.0 X) and are no longer symmetrical around 0.5 X. (D) Same as in

‘B’ but for a four-branch dendrite. Although ILstat is strongest when inhibitory synapses are placed at the junction,

ILdyn is weakest in this scenario. Instead, the maximum ILdyn occurs when inhibitory synapses are placed at 0.05 X. Left

inset, concurrent activation of multiple inhibitory synapses close to each other causes ILdyn to rapidly decline when

inhibitory synapses are close to the junction due to the pooled effects of Cl- loading. Right inset, the ends of the

branches restrict the diffusion of Cl- and therefore also decrease ILdyn.

https://doi.org/10.1371/journal.pcbi.1010534.g006
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exacerbated with increasing numbers of branches with inhibitory synapses. In more biologi-

cally realistic scenarios, there is often a “sink” that allows excess Cl- to diffuse down its electro-

chemical concentration gradient. The size of the sink can play a major role in the speed of

diffusion, with larger sinks allowing a faster funnelling away from sites of Cl- loading. We,

Fig 7. The optimal placement of inhibitory synapses to maximise the suppression of dendritic excitability. Given the same number of inhibitory synapses as dendritic

branches we determined their optimal placement for different distribution strategies. (A) Left plots, for the “Tree” distribution (where each branch has a single inhibitory

synapse at location i, example inset), the IL was measured (d) at the junction (IL0) and at the inhibitory synapses themselves (ILd = i). Due to Cl- loading, the maximum IL

at the junction (IL0), large marker, occurs when inhibitory synapses are a short distance away from the junction (0.07 X). In constrast, dendrites with more branches

generate maximum ILd = i when the inhibitory synapses are located closer to the junction (0.03 to 0.07 X) as more branches mean that there are more avenues for

diffusion to ameliorate deleterious [Cl-]i loading. Second from right plot, Inhibitory synapses placed in the “Focal” distribution (all concentrated at one spot) result in

substantial Cl- loading over 500 ms and therefore have an excitatory effect (IL< 0). Right plot, ILd = i for each inhibitory synapse in “Branch” distributions where

inhibitory synapses are placed with even spacing along a single branch. (B) The overall largest IL at any location on the dendritic tree is plotted for all varied synapse

locations using the “Tree” distribution. The optimal location for inhibitory synapses to create the largest depression of dendritic excitability is� 0.07 X and encircling a

junction. For 2 branches (blue), the overall maximum IL is at i itself; but additional branches have their maximum IL at the junction (IL0). This location optimises the

cumulative voltage-conductance inhibitory effect of the inhibitory synapses while reducing the pooling of Cl- loading via the synapses themselves. Inset, a dendrite with 4

branches and 4 synapses had its maximum IL when the inhibitory synapses were placed at 0.07 X and IL was measured at the junction (IL0). The ILd = i and the

accumulation index (AccIdx = IL0 / ILd = i) are also shown for comparison. (C) EGABA and IL heatmaps with the optimal inhibitory synaptic placements (downward

triangles) and the location for dampening dendritic excitability the most (arrowhead) for 2 (blue), 4 (green), 6 (purple), 8 (orange), and 16 (magenta) inhibitory synapses

and branches.

https://doi.org/10.1371/journal.pcbi.1010534.g007
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therefore, sought to investigate how a parent branch acting as a Cl- sink could influence the

inhibitory effectiveness of inhibitory synapses on child branches (Fig 8).

To do so, we added a “parent” branch to the 4-branch structure. Only 4 of the now 5

branches had inhibitory synapses such that parent branch acted as a sink for Cl- (4�, Fig 8).

Then, the parent branch diameter was changed from 1 μm (the same as the other dendrites) to

either 2 μm (Fig 8Ai and 8Aiii) or 0.5 μm (Fig 8Aii and 8Aiv). In Fig 8Ai and 8Aii, the change

in diameter resulted in different length constants, whereas Aiii and Aiv had their lengths pro-

portionally changed to maintain a length constant of 1 X. For a 4-branch structure (Fig 8B), a

larger sink diameter helps to recover the deleterious effects of Cl- loading when inhibitory syn-

apses are placed near the junction (note the lack of a sharp drop near the junction). This

adjustment shifts the location of inhibitory synapses that elicits the maximum IL (argmaxIL i)

for 4 branches with 1 sink (4�) from 0.07 X for 0.5 μm sink diameter, to 0.06 X for 1 μm, to

0.05 X for 1.5 μm and 0.00 X for 2 μm (green circles). The curves and maximum IL were virtu-

ally identical whether the length was proportionally increased along with the diammeter or

not. Finally, we explored how argmaxIL i varied with sink diameter for other branch structures

(Fig 8C). We found that the influence of the parent branch diameter on the optimal location

was heavily dependent on the number of child branches, with 2� and 4� dramatically shifting

their argmaxIL i from 1 μm to 2 μm compared to 6� and 8�. For static Cl-, the argmaxIL i would

be at the junction, so offsets farther away are due to Cl- loading. These results illustrate how Cl-

sinks (branches without inhibitory synapses or the soma) can affect the optimal placement of

inhibitory synapses.

Fig 8. The optimal placement of inhibitory synapses depends on the diameter of a parent branch, which creates a chloride sink. A large chloride “sink”

means that the inhibitory synapse location that maximises IL (argmaxIL i) moves closer to the shared branch junction. (A) A parent branch (a “sink”) attached

to a further 4 branches each with an inhibitory synapse (i = 0.2 X). The size of the parent branch was changed by altering the diammeter from 1 μm (black

shade) whilst keeping the length the same, which changes the length constant (<1 X, Ai and>1 X, Aii) or by changing the diameter and length proportionally

which maintained the length constant (= 1 X, Aiii and Aiv). The panels Ai-iv use a shared heatmap with the lowest and highest IL across all of them. (B)

Doubling the sink diameter from 1 μm (solid line) to 2 μm (alternating long dash then short dash) noticeably changed the IL at the junction (IL0) values and

moved the max IL (circle marker per diameter) closer to the junction (0.00 X). Halving the sink diameter to 0.5 μm (thinner dashed line) slightly shifted the IL0

trace and max IL was 0.07 X. This pattern, and IL values, were very similar when the parent branch length was changed in porpotion to the diammeter

(bottom)). (C) Summary panel indicating the effect of sink diameter on the optimal placement of inhibitory synapses for different branch (and synapse)

numbers, each having a single sink. Sinks of a larger diameter were more influential in ameliorating chloride-related deterioration in inhibitory efficacy but this

amelioration was dampened for more branches. The location of excitatory input d to elicit the maximum IL is indicated by a circle (junction) or triangle

(inhibitory synapse location).

https://doi.org/10.1371/journal.pcbi.1010534.g008
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Discussion

Previous work has shown that activity-dependent Cl- accumulation can compromise the abil-

ity of dendritically targeted inhibition to control neuronal output in the form of action poten-

tial generation at the soma and axon initial segment [26]. However, it is now well appreciated

that dendrites also host active conductances and that non-linear input integration occurs

within the dendritic tree itself [45,46]. Therefore, how Cl- dynamics affect the ability of periph-

erally targeted inhibition to control dendritic excitatory input is an important issue that

remains unexplored. Here we use a metric (the inhibitory level, IL), to quantify the extent to

which multiple inhibitory synapses (with variable EGABAs) can control excitatory depolariza-

tion within dendritic trees. This allowed us to determine the optimal spatial distribution of

inhibitory synapses to maximise local dendritic inhibition. We find that GABAergic synapses

with more negative EGABA are multiplicatively better at suppressing local dendritic excitation

throughout the branches (increased IL). Extending this, multiple GABAergic synapses can

cause greater inhibitory suppression at a shared branch junction than at any of the inhibitory

synapses themselves. This agrees with a previous study that demonstrated this effect for shunt-

ing inhibition [21]. Interestingly, while absolute IL is increased with more negative EGABAs,

the relative ratio of the IL at the junction compared to at the synapses themselves (i.e., the

accumulation of inhibitory effectiveness), is constant regardless of EGABA. This suggests that

although EGABA sets the strength of inhibition itself, the number of branches and their occu-

pancy by GABAergic synapses sets the relative accumulation of inhibition at a shared branch

point.

If EGABA is considered a static variable, the most powerful absolute local inhibition will

always be generated if all available inhibitory synapses are placed at the same location; for

example, at a branch junction or at the same location of a dendritic branch. In reality, however,

EGABA is susceptible to incoming Cl- currents through GABAARs. This is because synaptic

Cl- currents, if large enough, can overwhelm local extrusion Cl- mechanisms and reduce the

transmembrane Cl- gradient [31]. Our results clearly illustrate the detrimental effects of clus-

tering all available inhibitory synapses at the same location. The intuitive reasoning is that

local Cl- diffusion and transmembrane extrusion may be overwhelmed by the cumulative effect

of Cl- currents via multiple GABAergic synapses at the same location. We also show that this

effect is ameliorated to an extent by the presence of Cl- “sinks”, such as large volume parent

branches devoid of inhibitory synapses. Nonetheless, as demonstrated here, the negative effects

of Cl- loading could be part of the reason that inhibitory synapses cluster less on branches than

their excitatory counterparts [43,47,48].

When accounting for dynamic Cl-, temporal factors like duration and frequency of input

become an important consideration for understanding the effectiveness of dendritic inhibition

[26,27]. For example, a low-frequency burst or very short duration of inhibitory synaptic input

will result in negligible Cl- concentration changes. Therefore, in comparison to the analysis

presented here which used 1s of continuous inhibitory input, the optimal placement of inhibi-

tory synapses to maximise IL would be closer to a shared junction. However, high-frequency

bursts or sustained inhibitory inputs can drive substantial changes in [Cl-]i that, as we have

demonstrated here, strongly affect IL. Models of branched dendritic trees have previously been

conceptually and mathematically reduced to a single large cylinder with the same inputs

[19,49]. It is important to note that this approach of equivalent cylinders does not hold for the

case of dynamic Cl-, as the precise morphological structure (volume, surface area, spines, tor-

tuosity, etc.) and compartmental ion differences dictate the kinetics of Cl- dynamics and con-

sequent effects on GABAergic inhibition.
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Given the reality of Cl- dynamics in dendrites, our simulations predict that the optimal dis-

tribution of available GABAergic synapses to maximise local inhibition in a branched den-

dritic tree is to place synapses surrounding, but not at, a branch junction. This allows

centripetal accumulation of inhibitory effectiveness while minimising the detrimental effects

of Cl- loading that occurs when GABAergic synapses are all placed at the same location.

Indeed, experimental evidence suggests that dendritic inhibition (typically from somatostatin-

expressing–SOM+–interneurons) is widely distributed across pyramidal cell branches instead

of clustering synapses on a single branch, or primary dendrite [12,43,50–52]. This strategy has

several advantages. First, inhibitory synapses do not need to control excitation by directly tar-

geting each excitatory synapse. Second, dendritic inhibition targeting a particular branch

could control local integration there [52,53], but activating widespread inhibitory synapses

across multiple branches would be able to accumulate at a shared-branch junction, or primary

dendrite, to gate the generation of dendritic action potentials and the associated burst firing of

pyramidal neurons [54]. Third, this spatial arrangement would minimise the deleterious

effects of Cl- loading with continued synaptic drive and the accompanying potential for den-

dritic inhibition to fail, which would otherwise facilitate the onset of seizure activity [55].

Finally, branches without active inhibitory dendrites can still serve a functional role by acting

as Cl- sinks for branches with active inhibitory synapses.

In our models we did not incorporate non-linear conductances (such as NMDA receptors,

voltage-gated Ca2+, Na+ or K+ channels as well as hyperpolarization-activated cation currents)

and therefore did not model their interactions with, and possible effects on Cl- loading and

inhibition in dendrites. As described above our work predicts that spatially distributed den-

dritic inhibition, by minimising Cl- loading whilst still allowing centripetal accumulation of

inhibitory effectiveness would more powerfully prevent the activation of depolarization-gated

Ca2+ and Na+ currents and NMDARs than spatially localised inhibitory synapses. It should be

noted that the activity of excitatory voltage-gated cation currents themselves, by increasing the

driving force for Cl- influx during concurrent inhibitory input, would serve to accelerate Cl-

loading and more rapidly erode the strength of inhibition. The possible effects of HCN chan-

nels and voltage-gated K+ channels with inhibition in dendrites are more difficult to predict.

Nonetheless it is worth noting that these non-linear conductances can have paradoxical effects

on synaptic input [56].

Our approach utilised the equivalent circuit, charge sum approach to modelling the dynam-

ics of the membrane potential in dendritic compartments using the well-established NEURON

simulation environment [63]. This entailed computationally tractable but simplified ohmic

formulations of transmembrane and axial ionic currents. Furthermore, axial diffusion of Cl-

between compartments was modelled as a diffusion process as opposed to employing electro-

diffusion, which is thought to be particularly important at small spatial scales such as dendritic

spines [57,58], which were not modelled here. With increases in the availability of computa-

tional resources, future studies could attempt to confirm our findings in more realistic den-

dritic trees, which include dendritic spines and by explicitly incorporating electrodiffusion.

Experimentally verifying the local effects of dendritic inhibition is incredibly challenging

[11]. However, continually advancing methods allowing for more precise control of dendritic

circuits, e.g. dendritic patching [59] and spatially controlled 2-photon uncaging of glutamate

and GABA [60], could lead to the potential for direct experimental verification of our predic-

tions for the optimal placement of GABAergic synapses to control local excitation. Taken

together, our modelling work using simple dendritic structures provides a framework for

understanding the optimal distribution of GABAergic synapses to maximise suppression of

dendritic excitability.
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